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Abstract

Identifying change points in dynamic text data is crucial for understanding the evolv-
ing nature of topics across various sources, such as news articles, scientific papers, and
social media posts. While topic modeling has become a widely used technique for this
purpose, capturing fine-grained shifts in individual topics over time remains a significant
challenge. Traditional approaches typically use a two-stage process, separating topic mod-
eling and change point detection. However, this separation can lead to information loss
and inconsistency in capturing subtle changes in topic evolution. To address this issue, we
propose TOPIC-PYP, a change point detection model specifically designed for fine-grained
topic-level analysis, i.e., detecting change points for each individual topic. By leveraging
the Pitman-Yor process, TOPIC-PYP effectively captures the dynamic evolution of topic
meanings over time. Unlike traditional methods, TOPIC-PYP integrates topic modeling
and change point detection into a unified framework, facilitating a more comprehensive
understanding of the relationship between topic evolution and change points. Experimen-
tal evaluations on both synthetic and real-world datasets demonstrate the effectiveness of
TOPIC-PYP in accurately detecting change points and generating high-quality topics.
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1. Introduction

With the rapid advancement of technology and the exponential growth of the Internet,
text documents have become increasingly abundant across various fields, including news
articles, user posts, consumer reviews, and so on. However, due to the overwhelming volume
of textual data, it has become virtually impossible for individuals to effectively monitor
and identify key points or track emerging trends and topics. As a result, there has been
significant interest in developing automatic text summarization and change point detection
methods that enable users to quickly comprehend shifts in events within text streams.

In the field of statistics, change point detection refers to a well-defined problem that in-
volves identifying the specific moments when there is a significant change in the probability
distribution of a stochastic process or time series (Bai, 1997; Chib, 1998). The goal is to
accurately pinpoint the exact points in time when the underlying statistical properties of
the process undergo a noticeable shift. However, detecting change points in text streams
can indeed be challenging due to the unstructured nature of text documents. One plausible
approach is to first model the text documents into several topics via the methods of topic
models (Blei et al., 2003; Griffiths and Steyvers, 2004). Then change points can be defined
from the perspective of topic changes. By analyzing the shifts in the topic-related distribu-
tions over time, it becomes possible to identify moments when there are significant changes
in the themes or subject matter being discussed in the text stream.

The topic-assisted approach for text change point detection has gained attention as a
promising method in recent years (Bruggermann et al., 2016; Zhang et al., 2017; Wang
and Goutte, 2018; Zhong and Schweidel, 2020; Lu et al., 2022). In this regard, existing
literature can be roughly divided into two streams. The first stream usually adopts a two-
stage strategy to find the change points among topics. Specifically, the first stage is to build
topic models for text streams while the second stage is to detect the change points using the
obtained topic-word representations. In this way, the change points are defined from the
perspective of topic semantics, which are represented by the topic-word distributions. In
addition, by using the two-stage methods, one can detect the change points for each single
topic, which we refer to as “fine-grained” topic change point detection. Typical studies
in this stream include Bruggermann et al. (2016); Zhang et al. (2017); Wang and Goutte
(2018). However, this two-stage strategy poses some potential issues. Firstly, it may lead
to information loss, as the topic model learned in the first stage might not fully account
for the influence of change points. Secondly, due to the separate nature of the two stages,
the model may lack consistency in capturing subtle changes in the evolution of topics. This
inconsistency could result in missing crucial topic variations when actual change points
occur. Given the potential shortcomings of the two-stage methods, the second stream aims
to develop a unified framework combining topic modeling and change point detection. A
representative work is Lu et al. (2022), which introduces a Topic-CD model to detect obvious
changes experienced by all topics, not individual topics. Other unified methods include Lan
et al. (2013) and Zhong and Schweidel (2020). However, these two works define change
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points from the perspective of document-topic representations. In other words, they mainly
focus on detecting the changes in the discussed proportions of topics.

In this work, we aim to find the fine-grained changes for topics, i.e., detecting the change
points among the evolution of each individual topic, rather than detecting the change points
collectively across all topics. However, different from the commonly used two-stage strategy,
we develop a unified automatic model for topic change point detection. This integrated
approach facilitates a more comprehensive consideration of the relationship between topic
evolution and change points, enhancing the model’s sensitivity to the dynamic nature of
text data. To this end, we adopt the Pitman-Yor process (PYP, Pitman and Yor, 1995).
PYP is an extension of the Dirichlet process, which is commonly used in Bayesian modeling.
It has two key properties. The first one is the nonparametric nature. PYP dynamically
adjusts the number of clusters or categories as more data is observed, making it suitable for
data with an unknown or growing number of components. The second one is the power-law
behavior. It captures heavy-tailed distributions where a few categories (e.g., frequent words)
dominate, while many categories (e.g., rare words) occur infrequently but remain important.
These properties make PYP particularly popular for modeling topic-word distributions in
topic models (Sato and Nakagawa, 2010; Lindsey et al., 2012; Lim et al., 2016; Guo et al.,
2024). The nonparametric nature of PYP allows it to dynamically adapt to the increasing
number of unique words over time. The power-law property of PYP enables it to model
the heavy-tailed nature of word frequency distributions effectively, i.e., low-frequency words
often play a crucial role in distinguishing between topics. Therefore, we identify the change
points for each topic by modeling its topic-word distribution using PYP.

By incorporating the Pitman-Yor process, we develop TOPIC-PYP, a unified model for
topic change point detection. Assume there are K topics underlying a dynamic textual
corpus from 1 ≤ t ≤ T . During this period, each topic k has Qk change points. With
the occurrence of each change point, the meaning of this topic, which is represented by the
topic-word distribution (i.e., φk), is expected to change. To model the changing meanings of
a specific topic during the period, we use the Pitman-Yor process to generate the topic-word
distributions. Based on the meanings of topics, the generation of documents at each time
stamp is modeled similarly with the classic latent Dirichlet allocation (LDA, Blei et al.,
2003). In this way, topic modeling and change point detection are integrated into a unified
framework and performed simultaneously. To estimate the TOPIC-PYP model, we employ
the collapsed Gibbs sampling algorithm (Liu, 1994; Griffiths and Steyvers, 2004). Addition-
ally, we provide theoretical guarantees regarding the posterior consistency and numerical
convergence of TOPIC-PYP. The detection performance of the model is further evaluated
through a series of experiments on both synthetic data and two real-world datasets. The
results demonstrate that TOPIC-PYP can accurately detect change points and generate
high-quality topics.

The remainder of this paper comprises five sections. Section 2 reviews the related
literature. Section 3 presents the TOPIC-PYP model and then discusses its estimation
algorithm and theoretical properties in detail. In Section 4, the finite sample performance
of the TOPIC-PYP model is demonstrated through various experiments on synthetic data.
In Section 5 and Section 6, the TOPIC-PYP model is applied to two real datasets. Section
7 presents the conclusions and a brief discussion.
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2. Related Work

2.1 Probabilistic topic models for change point detection

In recent years, there has been significant interest in automatic text summarization and
change point detection. One popular approach for these tasks is the utilization of topic
models, which are a collection of three-level hierarchical Bayesian models. Latent Dirich-
let allocation (LDA) is the most basic topic model (Blei et al., 2003), which has gained
considerable attention and usage. LDA assumes there is a set of K topics underlying all
documents. Each topic is characterized by a probability distribution over the dictionary
of words (referred to as the topic-word distribution), and each document is characterized
by a probability distribution over these latent topics (referred to as the document-topic
distribution). As LDA is a static model, many researchers have extended LDA to dynamic
topic modeling for text streams. Among various dynamic extensions of LDA, the most
notable one is the dynamic topic model (DTM, Blei and Lafferty, 2006b), which applies
the Gaussian process to model the evolution of topic-word distributions. Other important
works include the topics over time model (TOT, Wang and Mccallum, 2006), the multiscale
topic tomography model (MTTM, Nallapati et al., 2007), temporal Dirichlet process mix-
ture model (TDPM, Ahmed and Xing, 2008), infinite dynamic topic model (iDTM, Ahmed
and Xing, 2010), continuous time dynamic topic model (Wang et al., 2012), joint dynamic
topic model (Zhu et al., 2022), and so on.

Although dynamic topic models can find topic evolution patterns, they mainly detect
the gradual changes of topics. To detect the sudden changes or obvious changes of topics,
the change point detection methods are often applied. An early work to find topic change
points is Holz and Teresniak (2010), which utilized a volatility measure to identify contextual
shifts in topics over time. Later on, Bruggermann et al. (2016); Zhang et al. (2017); Wang
and Goutte (2018) combined topic models with change point detection methods. The basic
idea of these works is to first apply topic models to extract the dynamic patterns of topic
meanings; then some change point detection methods are adopted for each topic to find
change points. For example, Bruggermann et al. (2016) employed a dynamic topic model to
generate the dynamic sequences of each topic. Then they detected a change point when the
distance of any two topic-word distributions in adjacent periods had exceeded a predefined
threshold. Wang and Goutte (2018) focused on real-time change point detection. They first
used the online LDA model to obtain the dynamic sequences of topic-word distributions
and then applied online change point detection methods to identify the change points for
each topic. Additionally, Rieger et al. (2022) developed a Rolling LDA method, leveraging
rolling window techniques to detect changes in topics. In this way, it allows for the timely
identification of shifts in topic-word distributions. Furthermore, Zhang and Lauw (2022)
extended dynamic topic modeling to account for the document networks over time, enabling
a comprehensive analysis of topic evolution and change point detection within network
structures.

It is notable that, the above methods are all two-stage approaches. That is, they conduct
topic modeling and topic change point detection separately in two steps. However, as topic
change point is a significant feature of documents, combining topic modeling and change
point detection would enhance the ability to summarize document meanings and capture
important change points, leading to a more comprehensive understanding of the textual
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data. In this regard, Lu et al. (2022) developed a unified model called Topic-CD for topic
change point detection. They assumed the change points existed for the hyperparameter βt,
which controlled the generation of topic-word distributions. The changing pattern of βt was
further modeled by the Dirichlet process hidden Markov multiple change-point (DPHMM)
process (Ko et al., 2015). However, Topic-CD aims to detect change points for the whole
topic set, not for each single topic. In other words, it implicitly assumes all topics share the
same change points, which seems too strong and might be not realistic in practice. Another
unified work is Zhong and Schweidel (2020), which also adopted DPHMM to model change
points. However, it focuses on the hyperparameter αt, which controls the generation of
document-topic representations.

2.2 Neural topic models for change point detection

Traditional topic models are primarily based on probabilistic frameworks. In recent years,
with advancements in artificial intelligence, neural topic models (NTMs) that utilize neural
network architectures have gained significant popularity due to their superior ability to en-
hance topic representation and adaptability. For example, the neural variational document
model captures latent topic distributions through encoder-decoder frameworks (Miao et al.,
2016). The adversarial-neural topic model improves topic learning through generative ad-
versarial networks (Wang et al., 2019). To model dynamic documents, Gupta et al. (2019)
developed a neural autoregressive topic model by incorporating neural language models
such as RNN and LSTM. Dieng et al. (2019) extended the classic DTM by using word
embeddings and developed the D-ETM model. Cvejoski et al. (2023) introduced a neural
dynamic focused topic model to dynamically adjust topic focus based on context, enabling
a refined understanding of topic representations in evolving text. In a similar vein, Kellert
and Zaman (2022) employed the BERTopic model to track the contextual shifts of words
during the COVID-19 pandemic. Miyamoto et al. (2023) proposed a dynamic structured
neural topic model (DSNTM) that leverages a self-attention mechanism to capture tem-
poral dependencies among topics, enabling the modeling of topic branching and merging
process. Wu et al. (2024a) introduced a chain-free dynamic topic model (CFDTM) that
uses evolution-tracking contrastive learning and word exclusion to capture topic evolution
while addressing repetitive and unassociated topics. Rahimi et al. (2024) proposed the
aligned neural topic model (ANTM), which uses pre-trained transformer embeddings, and
an overlapping sliding window for temporal document clustering. More discussions about
NTMs can be found in the survey paper of Wu et al. (2024b).

Overall, NTMs have the advantage of capturing complex, non-linear patterns and in-
corporating rich contextual information, especially when training on large-scale text data.
However, to the best of our knowledge, there are currently no neural topic models specifically
designed for the task of topic change point detection. To take advantage of dynamic neu-
ral topic models for change point detection, a two-stage approach should be also required.
This gap highlights an important distinction between NTMs and our proposed TOPIC-
PYP method. First, unlike existing NTMs, our model explicitly incorporates mechanisms
to detect change points, combining topic modeling and change point detection in a uni-
fied framework. This approach aligns more closely with the generation process of dynamic
documents with topic change points. Second, while NTMs rely on embeddings that can
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sometimes lack transparency, our method retains the interpretability inherent in classical
probabilistic topic models. Last, our model often requires fewer training resources com-
pared to NTMs, the latter of which often involve complex neural architectures. However,
as a probabilistic topic model, TOPIC-PYP also has some limitations compared to NTMs,
especially in capturing complex relationships and handling large-scale dynamic documents.
Thus how to extend TOPIC-PYP by incorporating modern deep learning techniques is an
important direction in future work.

2.3 Topic models using PYP

The Pitman-Yor process (PYP) is a nonparametric Bayesian process that extends the
Dirichlet process by introducing an additional “discount” parameter (Pitman and Yor,
1995). This parameter enables PYP to effectively capture heavy-tailed word frequency
distributions (i.e., the power-law phenomenon) in topic models. Furthermore, its nonpara-
metric nature allows PYP to remain flexible when encountering new vocabulary in dynamic
documents. These properties make PYP particularly well-suited for capturing topic dynam-
ics and word distribution patterns in documents. As a result, PYP has become increasingly
popular in topic modeling. For example, the Pitman-Yor topic model (PYTM) combines
PYP and LDA to better reflect the power-law distribution observed in natural language,
in which certain words and topics can become more prevalent (Sato and Nakagawa, 2010).
The phrase-discovering LDA (PDLDA) uses the hierarchical Pitman-Yor process (HPYP)
to uncover interpretable topical phrases while capturing linguistic dependencies and non-
compositional structures (Lindsey et al., 2012). Buntine and Mishra (2014) reinforced PYP’s
advantages in capturing the intricate and hierarchical structures of topics in the text, high-
lighting the potential of nonparametric approaches for handling complex data patterns in
textual corpora. The hierarchical Pitman-Yor topic model (HPYTM) extends PYTM to a
multi-level structure, allowing the number of topics to vary across documents (Lim et al.,
2016). Integrating PYP with the hidden Markov topic model, Guo et al. (2024) further
combined power-law behavior with temporal topic dependencies, enhancing the model’s
ability to represent inter-topic relationships. The above studies demonstrate the utility of
PYP in topic modeling. In this work, to enhance the detection of topic change points, we
also leverage the strengths of PYP to model the generation of topic-word distributions.

3. Methodology

3.1 Model description

Suppose there exists a dynamic document corpus observed over T time points. At each
time point t (1 ≤ t ≤ T ), we observe Dt documents. Consequently, the total number of
documents is D =

∑T
t=1Dt. Further assume there are a total of K topics underlying all D

documents. Although the number of topics is fixed for all T moments, the topic meanings
could change over time. In this work, the change point detection problem is defined for
each single topic, i.e., we allow each topic to have its own change points. Therefore, we aim
to conduct “fine-grained” change point detection, which is in line with the past literature
(Bruggermann et al., 2016; Wang and Goutte, 2018). Below, we first describe the generation
process of change points.
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Assume each topic has a topic shift probability πk with 1 ≤ k ≤ K, which describes
the possibility that topic k could change over time. We assume the shift probability πk
follows a Beta distribution with hyperparameters λ0 and λ1. Then for the t-th moment, a
shift indicator ik,t (valued 0 or 1) is used to characterize whether topic k has experienced a
change point or not. Assume the shift indicator is generated from a Bernoulli distribution
with parameter πk. Let ik = (ik,1, ..., ik,T )> ∈ RT denote the shift indicator vector for topic
k. Given the topic shift indicators, the total number of change points for topic k is Qk =∑T

t=1 ik,t, which partitions the T moments into Sk = Qk+1 segments. Further define sk,t =∑t
j=1 ik,j + 1 as the index of segment at time point t for topic k. For easy understanding,

consider a toy example illustrated in Figure 1. Assume there is a time period with T = 7
moments. Assume a certain topic k has the shift indicator ik = (0, 1, 0, 0, 1, 0, 0)>, which
means it has two change points occurring at t = 2 and t = 5. The two change points split
the whole time period into Sk = 3 segments. The segment index vector is computed as
sk = (1, 2, 2, 2, 3, 3, 3)>, which indicates there are three segments {1}, {2, 3, 4} and {5, 6, 7}.

Figure 1: A topic example with two change points occurring at t = 2 and t = 5. The
resulting three segments are {1}, {2, 3, 4} and {5, 6, 7}.

With the locations of change points for each single topic, we then describe the generation
process of topic meanings. Let φk,t = (φk,t,1, ..., φk,t,V )> ∈ RV denote the probability
distribution for topic k at the t-th moment over the whole dictionary with V words. If there
exists a change point at the tth moment for topic k, then φk,t+1 should be different from φk,t.
In other words, φk,t should remain the same within moments in the same segment but behave
differently after a change point occurs. Specifically, for the sth segment with 1 ≤ s ≤ Sk,
define the topic-word distribution in this segment to be φk,s = (φk,s,1, ..., φk,s,V )> ∈ RV .
To model the changing pattern of φk,s within different segments, we adopt the Pitman-
Yor process (PYP, Pitman and Yor, 1995). Generally, there are three hyperparameters in
a Pitman-Yor process: (1) the discount parameter a, (2) the concentration parameter b,
and (3) a basis discrete prior distribution H(·). Therefore, a Pitman-Yor process is often
referred to as PYP(a, b,H(·)). The detailed discussion of PYP is given in Section 3.2.

PYP is a stochastic Bayesian process with two key features: one is the nonparametric
nature and the other is the power-law behavior. These two features make PYP particularly
popular for modeling the topic-word distributions in topic models (Sato and Nakagawa,
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2010; Lindsey et al., 2012; Lim et al., 2016; Guo et al., 2024). Its nonparametric nature
allows it to dynamically adapt to the increasing number of unique words as time goes by. Its
power-law property enables it to model the heavy-tailed nature of word frequencies, i.e., low-
frequency words often play a crucial role in distinguishing between topics. Additionally, by
using PYP to characterize the changing patterns of topic-word distributions, we can retain
a certain proportion of similarities within the same topic but also allow for significant
change in different segments. This balance is mainly achieved by the power-law property
of PYP, which inherently leads the model toward reusing dominant topics but still permits
new words to emerge. Therefore, PYP is well suited to our task of detecting topic change
points.

Last, we discuss the generation process of documents. Based on the topic-word distri-
butions φk,s for each topic on each segment, the generation of documents is similar to that
of the LDA model (Blei et al., 2003). Specifically, assume each document is a mixture of K
topics, which is represented by the probability vector θt,d = (θt,d,1, . . . , θt,d,K)> ∈ RK . Each
word in the document can represent one specific topic zt,d,n ∈ {1, ...,K}, which is generated
from a multinomial distribution with parameter θt,d. Under the represented topic zt,d,n, the
observed word wt,d,n is drawn from the corresponding topic-word distribution φk∗,s∗ , where
k∗ = zt,d,n and s∗ is the corresponding segment index sk∗,t.

Overall, the generative process of TOPIC-PYP is presented below, which is illustrated
in Figure 2. The generative process contains three stages. Stage 1 describes the process of
determining the number and locations of the change points, Stage 2 employs the Pitman-
Yor process to model the changing patterns of topic meanings given the identified change
points, and Stage 3 is the final process of generating the documents.

1. Stage 1:Generation of Change Points.

For topic k with 1 ≤ k ≤ K:

(a) Generate the topic shift probability πk: πk ∼ Beta(λ0, λ1) .

(b) For the t-th moment with 1 ≤ t ≤ T :

i. Generate the topic shift indicator: when t = 1, set ik,t = 0; when t > 1,
generate ik,t ∼ Bernoulli(πk).

ii. Compute the index of segment: sk,t =
∑t

j=1 ik,j + 1.

(c) Compute the total number of segments: Sk =
∑T

t=1 ik,t + 1.

2. Stage 2: Generation of Topics.

For topic k with 1 ≤ k ≤ K:

(a) Generate the basis prior topic-word distribution from a homogeneous Dirichlet
distribution: hk ∼ Dir(γ).

(b) For each specific segment s ∈ {1, . . . , Sk}:
i. Generate the topic-word distribution using a Pitman-Yor process: φk,s ∼

PYP(a, b, hk)

3. Stage 3: Generation of Documents.

For document d with 1 ≤ d ≤ Dt and 1 ≤ t ≤ T :
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(a) Generate its document-topic distribution over K topics: θt,d ∼ Dir(α)

(b) For word n ∈ {1, . . . , Nd}:
i. Generate the word topic indicator: zt,d,n ∼ Multinomial(θt,d), and denote
zt,d,n by k∗ for easy illustration.

ii. Find the index segment for topic k∗: s∗ = sk∗,t.

iii. Generate the specific word: wt,d,n ∼ Multinomial(φk∗,s∗).

Figure 2: The generative process of TOPIC-PYP, illustrated by an example with two topics
and one change point in each topic within four time periods. Specifically, the first
topic has a change point at t = 2, while the second topic has a change point at
t = 3. Overall, the generative process of TOPIC-PYP involves three stages: the
generation of change points (Stage 1), the generation of topic meanings assisted
by PYP (Stage 2), and the generation of documents (Stage 3).

We make two remarks about the above generative process. First, we adopt a homoge-
neous Dirichlet distribution for the basis prior topic-word distribution hk. The homogeneous
assumption has been widely adopted in the past literature; see Blei et al. (2003); Blei and
Lafferty (2006a); Blei and Mcauliffe (2008); Rosen-Zvi et al. (2012); Lu et al. (2022) for
examples. It actually assumes that all words have the same occurring probability under
a given topic, without any inherent preference for specific words. Wallach et al. (2009)
further discussed this problem for LDA and found an asymmetric prior over the topic–word
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distributions provides no real benefit. Therefore, in this work, we just follow the common
practice to adopt the homogeneous assumption on topic-word distributions.

Second, although the generative process contains Stage 1, Stage 2, and Stage 3
sequentially, we cannot sequentially estimate these stages. This is because, practically, the
estimation of the number and positions of change points in Stage 1 should rely on the topic-
word distributions (i.e., the φk,s). However, the φk,ss are further modeled using the Pitman-
Yor process in Stage 2. In other words, φk,s serves as the input in estimating Stage 1,
but the output from the estimation of Stage 2. Therefore, if we were to estimate the
Stage 1 and Stage 2 sequentially and independently, the topic-word distributions would
become inconsistent between the two stages. Due to this inherent dependency problem,
existing two-stage estimation methods in fact invert the estimation order. That is, they
first perform Stages 2&3 to estimate the topic-word distributions using some pre-defined
models, and then proceed Stage 1 to detect the change points using the obtained φk,s.
Please see Bruggermann et al. (2016), Zhang et al. (2017), and Wang and Goutte (2018)
for more discussions about the existing two-stage methods. In this work, we do not adopt a
two-stage approach. Instead, we integrate these stages into a unified framework, combining
topic modeling and change point detection. This integrated approach should align more
closely with the natural generation process of documents.

Given the generative process of TOPIC-PYP, we can derive the posterior distribution for
all variables, hyperparameters, and the data. Then by integrating out some latent variables,
the proposed TOPIC-PYP can be estimated using the collapsed Gibbs sampling algorithm
(Liu, 1994; Griffiths and Steyvers, 2004). We describe the details of model estimation in
Section 3.3.

3.2 The Pitman-Yor process

In this work, we adopt the Pitman-Yor process (PYP) to model the generation of topics.
Assume there is a Pitman-Yor process denoted by PYP(a, b,H(·)). Here a ∈ [0, 1) is
the discount parameter, b > −a is the concentration parameter, and H(·) is the basis
word distribution of topics. The discount parameter a controls the degree of sparsity and
the heavy-tail behavior in the topic-word distributions. A larger a would encourage a
heavy-tailed distribution and allow more rare words to appear with high probability. The
concentration parameter b influences the diversity of the topic-word distributions and the
probability at which new words are introduced. A larger b would increase the diversity
by encouraging the generation of new words with high probability. The basis distribution
H(·) serves as the baseline word distribution for a given topic. For example, a uniform
basis distribution H(·) treats all words with equal probability initially, promoting unbiased
exploration of the vocabulary.

For a better understanding of the Pitman-Yor process, we use the stick-breaking process
to illustrate its mechanism. Specifically, PYP can be described using the following steps.

(1) Assume there exists a stick of length 1. We sample a random value V1 from Beta(1−
a, b) and split the stick into two parts. One stick is V1 long and the other stick is
1− V1 long. Then define the first probability value p̃1 = V1.
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(2) Sample another random value V2 from Beta(1 − a, b + a). Multiply the remaining
1 − V1 with V2 to get the length (1 − V1)V2 of the second stick. Then we define the
second probability value p̃2 = (1− V1)V2.

(3) Repeat the previous steps. For the ith step, sample a random value Vi from Beta(1−
a, b+ i× a). Then compute p̃i = (1− Vi)

∏i−1
j=1(1− Vj).

By using the stick-breaking process, we have a series of probability values p̃1, p̃2, . . . ,
which satisfies

∑∞
i p̃i = 1. Next, assume a series of samples v1, v2, . . . are drawn sequentially

from the prior distribution H(·). Define a discrete distribution φ = (p̃1, p̃2, . . . )
> satisfying

P (w = vi) = p̃i. Then we say φ follows PYP(a, b,H(·)) and w follows a multinomial
distribution with parameter φ.

In the context of TOPIC-PYP, assume φk,s ∼ PYP(a, b, hk) for the given topic k and seg-
ment s, where hk is a basis prior distribution. Suppose a sequence of words w1, w2, . . . , wN
is generated from the multinomial distribution with parameter φk,s. Then we try to derive
the conditional posterior probability of a new word wN+1 given the N observable words.
As shown in Buntine and Hutter (2010) and Chen et al. (2011), by integrating out φk,s, the
conditional posterior probability of wN+1 can be derived as follows:

p(wN+1 | w1, . . . , wN , a, b, hk) =
b+Ma

b+N
hk +

∑
m∈M

nvm − a
b+N

I(wN+1 = vm). (1)

To better understand Equation (1), we explain the Pitman-Yor process from the per-
spective of Chinese restaurant process (CRP), which is discussed in Appendix A.1. Simply
speaking, we can regard the word generation process as a customer choosing a dish in a
restaurant. Assume a document represents a restaurant. Each word wi refers to a new
customer entering the restaurant, its representing topic zi refers to the table, and the dish
enjoyed by the customer refers to the selected value vi from the vocabulary. Each time a
new customer (word) enters the restaurant (document), it should make two choices. First,
it should choose a table (topic). In this step, it either chooses an existing table or a new
table. After sitting at one table, it should choose a dish (a specific value in vocabulary) on
the table. If the customer joins an existing table, it automatically selects the dish one that
table. Note that one table only has one dish. If the customer opens a new table, it selects
a dish from the menu hk.

To explain Equation (1), note that we have already observed N words (w1, . . . , wN ).
Let M contain the indices of N words directly selected from the prior distribution hk (i.e.,
opening new tables), and M be the corresponding count. Then we should have M ≤ N .
For m ∈M, let vm be the specific value of wm (i.e., the dish on the table). Further denote
nvm to be the number of times vm being selected among the N words. Then Equation
(1) implies that, the value of a new word wN+1 is drawn from the prior distribution hk
with probability (b + Ma)/(b + N), or equals to one previously appeared word vm with
probability (nvm − a)/(b + N). We remark that, based on the definition of PYP, we have
0 ≤ a < 1. Recall M ≤ N . Therefore we should have Ma < N . Accordingly, the inequality
(b+Ma) ≤ (b+N) holds, which guarantees the probability (b+Ma)/(b+N) lying between
0 and 1.

The Pitman-Yor process is a suitable choice to characterize the changing pattern of topic-
word distributions due to its nonparametric and power-law features. Except for PYP, there
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exist other stochastic Bayesian processes suitable for modeling the topic-word distributions.
One example is the Polya tree process (Ferguson, 1974; Lavine, 1992). By constructing
hierarchical structures, this process captures complex dependencies in data and provides
a flexible way to model intricate word distributions. Another example is the hierarchical
Dirichlet process (HDP, Teh et al., 2006), which is an extension of the Dirichlet process.
HDP allows for shared topics across grouped data, which can effectively model both global
and local topic structures. Known for modeling overlapping features, the Indian buffet
process (IBP, Ghahramani and Griffiths, 2005) is particularly useful in discovering shared
and unique topics across documents and thus serves as another suitable choice.

3.3 Model estimation

To estimate TOPIC-PYP, we develop a collapsed Gibbs sampling method (Liu, 1994; Grif-
fiths and Steyvers, 2004). We first define some necessary notations. Let Π = {π1, . . . , πK}
be the collection of topic shift probabilities and I = {ik,t, 1 ≤ k ≤ K, 1 ≤ t ≤ T} be the
collection of topic shift indicators. Let Φ = {φk,s, 1 ≤ k ≤ K, 1 ≤ s ≤ Sk} be the collection
of topic-word probabilities, and H = {h1, . . . , hK} be the collection of prior topic-word
probabilities. Further define Θ = {θt,d, 1 ≤ t ≤ T, 1 ≤ d ≤ Dt} to be the collection of
document-topic probabilities, Z = {zt,d,n, 1 ≤ t ≤ T, 1 ≤ d ≤ Dt, 1 ≤ n ≤ Nt,d} to be
the collection of topic indicators, and W = {wt,d,n, 1 ≤ t ≤ T, 1 ≤ d ≤ Dt, 1 ≤ n ≤ Nt,d}
to be the collection of all words. To facilitate the estimation procedure, we introduce
a new dummy variable δt,d,n. Specifically, define δt,d,n = 1 when the word wt,d,n is the
first customer in a new table representing topic zt,d,n; and δt,d,n = 0 otherwise. Then let
∆ = {δt,d,n, 1 ≤ t ≤ T, 1 ≤ d ≤ Dt, 1 ≤ n ≤ Nt,d}. In the TOPIC-PYP model, the
hyperparameters include λ0, λ1 for the Beta prior of πk, a, b for the Pitman-Yor process,
and γ, α for the Dirichlet priors of the topic-word and document-topic distributions. Define
Ξ = {a, b, γ, α, λ0, λ1} to be the collection of hyperparameters.

Based on the above notations, the joint posterior distribution of all variables {Π,H, I,Φ,
Θ,Z,∆} given the hyperparameters Ξ and observed words W can be derived as follows,

f(Π, I,H,Φ,Θ,Z,∆|W,Ξ)

∝f(Π | λ0, λ1)f(I | Π)f(H | γ)f(Φ | a, b,H)f(Θ | α)f(Z | Θ)f(W,∆ | Φ,Z, I).

Based on Theorem 17 in Buntine and Hutter (2010), we can integrate out Π, Θ, Φ and
H by the conjugate structure. This yields the joint posterior distribution over {I,∆,Z}
given the hyperparameters and data, which is denoted by f(I,∆,Z|W,Ξ). The derivation
details are present in Appendix A.2. As a result, we just need to estimate {I,∆,Z}. To this
end, we apply the collapsed Gibbs sampling method, which employs an iterative two-step
algorithm: (1) estimate {∆,Z} given I, and (2) estimate I given {∆,Z}. See Appendix A.3
and Appendix A.4 for the detailed derivations of the posterior distributions f(∆,Z|I,W,Ξ)
and f(I|∆,Z,W,Ξ), respectively.

To begin the algorithm, we need first set the initial value of I. In this work, we gen-
erate the initial value of I following the generative process of TOPIC-PYP in Figure 2.
Specifically, under the given hyperparameters λ0 and λ1, the topic shift probability πk with
1 ≤ k ≤ K can be generated from Beta(λ0, λ1). Then a topic shift indicator ik,t for topic k
at time t can be generated from Bernoulli(πk). All the generated ik,ts construct the initial

12



Fine-Grained Topic Change Point Detection

value I. Subsequently, in each iteration, the first step is to estimate {∆,Z} given I, and
the second step is to estimate I given {∆,Z}. By updating {∆,Z} and I iteratively using
the Gibbs sampling method, we could obtain a series of posterior samples of {∆,Z, I},
based on which the model estimation can be conducted.

Assume we obtain a total of R posterior samples for {∆,Z, I} after convergence, which
are denoted by {∆(r),Z(r), I(r)} with 1 ≤ r ≤ R. In this work, we mainly focus on the
estimation of two types of parameters. The first one is I, which represents the locations
of change points for each topic. Using the R posterior samples, we can compute the max-
imum a posteriori (MAP) estimator for I as Î = {̂ik,t, 1 ≤ k ≤ K, 1 ≤ t ≤ T}, where

îk,t = mode{i(1)
k,t , ..., i

(R)
k,t }. Accordingly, the number of change points for each topic can be

estimated as Q̂k =
∑T

t=1 îk,t. The second parameter of research interest is Φ, which rep-
resents the topic-word distributions. Based on Φ, we can summarize the meaning of each
topic at each segment. Recall φk,s = (φk,s,1, ..., φk,s,V )> ∈ RV denotes the word distribution
for topic k at the s-th segment over the whole dictionary with V words. The estimation of
φk,s should rely on the posterior samples of {∆,Z}. First, similar to the estimation of I,
we compute the MAP estimators of {∆,Z} using the mode of the corresponding R poste-
rior samples, which are denoted by {∆̂, Ẑ}. Then compute nk,s,v and τk,s,v using {∆̂, Ẑ};
see Step 3 in Appendix A.2 for their detailed definitions. Last, compute the estimator
φ̂k,s = (φ̂k,s,1, ..., φ̂k,s,V )>, where φ̂k,s,v = (nk,s,v−aτk,s,v+bhk,v)/(

∑
v nk,s,v−a

∑
v τk,s,v+b).

Here hk = (hk,1, ..., hk,V )> is the basis prior distribution.

Last, we provide some theoretical guarantees for the numerical convergence of the esti-
mation algorithm. That is, whether the posterior samples obtained by the Gibbs sampling
method can converge to the true posterior distribution. Note that, the iterative method to
estimate {∆,Z, I} is indeed Gibbs sampling. It is a well-established Markov chain Monte
Carlo (MCMC) technique and its convergence property has been rigorously proven under
certain conditions; see Roberts and Rosenthal (2004); Gelman et al. (2013) for details. The
key theoretical result of Gibbs sampling is that, as long as the conditional distributions are
regular (i.e., they have sufficient support) and the Markov chain is ergodic, Gibbs sampling
will converge to the true posterior distribution. In TOPIC-PYP, the posterior distribu-
tion f(∆,Z|I,W,Ξ) is multinomial, while the posterior distribution f(I|∆,Z,W,Ξ) is
Bernoulli; see Appendices A.3 and A.4 for details. Multinomial distribution is well known
for its broad support, encompassing all possible outcomes where the counts of categories
sum to a fixed total. The probability mass function ensures that the posterior distribution
f(∆,Z|I,W,Ξ) covers the entire support of {∆,Z}, provided I and others are fixed. This
ensures that the regularity condition, specifically the sufficient support, is satisfied. As
for the Bernoulli distribution, it has a support of {0, 1}, and its probability mass function
assigns positive probabilities to both possible outcomes as long as the success probability
lies between zero and one. This property naturally holds for the posterior distribution
f(I|∆,Z,W,Ξ), ensuring the regularity condition is met. By alternating between these
two distributions during Gibbs sampling, the Markov chain transitions between states with
sufficient support and retains irreducibility and aperiodicity. These conditions collectively
ensure the ergodicity of the Markov chain and its convergence to the true posterior distribu-
tion. Therefore, the numerical convergence property of TOPIC-PYP should be supported.
To empirically demonstrate this property, we validate the posterior convergence of TOPIC-
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PYP in simulation experiments on syngenetic datasets. Please see Appendix B.1 for the
detailed results.

3.4 Posterior consistency

In this section, we study the posterior consistency of parameters in TOPIC-PYP. As we
mentioned before, in this work, we mainly focus on two types of parameters. The first one
is I, which represents the locations of change points for each topic; while the second one is
Φ, which represents the meanings of topics. Therefore, we study the posterior consistency
for the two parameters, respectively.

We first focus on I. Note that it is difficult to directly apply traditional theoretical
results (such as Doob’s Theorem (Doob, 1949)) on the posterior consistency of I. This is
mainly because of two reasons. First, the words wt,d,ns across different time points may
not be identically distributed because the topic-word distributions represented by φk,s can
change over time. Second, since the estimate of I is obtained through Gibbs sampling,
it is challenging to derive a function f such that I = f(W), which is measurable with
respect to the sigma-field generated by the sequence {wt,d,n : d → ∞, n → ∞}. These
issues complicate the direct application of traditional results on posterior consistency of
I. To address this issue, we study the posterior consistency of I based on McGoff et al.
(2022), which establishes a general framework for understanding the asymptotic behavior
and Bayesian posterior consistency of Gibbs posterior distributions in dependent processes.
To simplify the analysis, we assume all time points have the same number of documents,
i.e., Dt = D for 1 ≤ t ≤ T ; and all documents have the same number of words, i.e., Nt,d = N
for 1 ≤ t ≤ T, 1 ≤ d ≤ D. Then the posterior consistency of I is summarized in Theorem
1.

Theorem 1 Let W = {wt,d,n, 1 ≤ t ≤ T, 1 ≤ d ≤ D, 1 ≤ n ≤ N} be a collection of words
generated independently from the TOPIC-PYP model PI∗,Φ∗, which is parameterized by the
true change points locations I∗ = (i∗k,t) ∈ {0, 1}KT and the true topic-word distributions
Φ∗ = {φ∗k,s, 1 ≤ k ≤ K, 1 ≤ s ≤ Sk}, with the other parameters omitted. Denote by Π
the prior distribution of I, with its density specified in (A.1) in Appendix A.2. For a given
ε > 0, define the set B(I∗, ε) = {I ∈ {0, 1}KT :

∑
k

∑
t I(ik,t 6= i∗k,t) < ε}, where I(·)

denotes the indicator function. Then with a fixed time span T , for any neighborhood of I∗,
we have the asymptotic result:

lim
D,N→∞

Π{I ∈ B(I∗, ε)|W} = 1 a.s. [PI∗,Φ∗ ].

The proof of Theorem 1 can be found in Appendix A.5. This theorem illustrates that as the
number of documents and the number of words increase, the posterior distribution of the
change points will almost surely concentrate around the true change points. This implies
that as D and N increase, the estimate of the change points I will converge to the true
change points I∗ with high probability.

Next, we focus on the posterior consistency of Φ. Let Ωk−1 = {x ∈ Rk : 0 ≤ xi ≤
1,
∑k

i=1 xi = 1} denote the (k − 1)-dimensional probability simplex. Then each topic φk,s
(1 ≤ k ≤ K, 1 ≤ s ≤ Sk) is a vector in the probability simplex ΩV−1. Our primary interest
is to study the posterior consistency of each individual topic parameter φk,s. However,
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in practice, topics are often correlated and tend to share keywords. This is particularly
true in our case, since the topic-word probability vectors associated with the same topic
across different segments often have some similarity, making them not fully identifiable.
To tackle this problem, we follow the practice of Tang et al. (2014) and Nguyen (2015) to
study the convergence of topic polytope, which is defined as the convex hull of the topic
parameters, i.e., G = conv(Φ) = conv(φ1,1, · · · , φ1,S1 , · · · , φK,1, · · · , φK,SK

). Then G has at

most
∑K

k=1 Sk vertices (i.e., extreme points) among {φ1,1, · · · , φ1,S1 , · · · , φK,1, · · · , φK,SK
}.

Assume the observed words W are generated according to the TOPIC-PYP model PI∗,Φ∗

with the other parameters omitted. Let G∗ = conv(Φ∗) be the true topic polytope. Under
the TOPIC-PYP model, Φ is endowed with a prior distribution Ψ based on the Pitman-Yor
process. Then Theorem 2 characterizes the contraction behavior of the posterior distribution
Ψ(G|W), as the numbers of documents D and words N go to infinity.

Theorem 2 Assume G∗ is in the support of prior Ψ. Let p = min(
∑K

k=1 Sk − 1, V ).
Under the assumptions (A1)-(A3) in Appendix A.6 and with a fixed time length T , as
D →∞, N →∞ and D,N satisfying log(TD) ≤ N , for some sufficiently large constant C
independent of D and N , we have

Ψ(dM(G∗, G) ≥ CδT,D,N |W)→ 0 a.s. [PI∗,Φ∗ ],

where δT,D,N = {(log TD)/TD+ (logN)/N + (logN)/TD}1/(2p) is the posterior concentra-
tion rate, and dM is some distance measure.

The proof of Theorem 2 is provided in Appendix A.6. In this theorem, we employ the
Euclidean distance metric, specifically the “minimum-matching” distance dM(G∗, G), to
measure the dissimilarity between the topic polytope G and the true topic polytope G∗. A
precise definition of this metric is provided in Appendix A.6. Since the minimum-matching
distance is determined solely by the extreme points of the polytopes, the convergence of
the convex polytope G in Theorem 2 ensures the convergence of all extreme points in the
polytope. Consequently, Theorem 2 establishes an explicit upper bound for the asymptotic
rate at which the posterior distribution of the topic-word parameters Φ concentrates around
their true values Φ∗. This derived rate is contingent upon a condition that governs the
required “thickness” of the prior support for the marginal densities of the data PW|G, in
addition to an upper bound on the entropy of the space of such densities. The upper bound
δT,D,N is shown to deteriorate with respect to p, exhibiting a behavior akin to that of a
nonparametric rate. This phenomenon arises because the true number of topics does not
need to be pre-specified, nor is there a requirement for the topics to be well-separated. In
practice, the total number of segments split by change points (i.e.,

∑K
k=1 Sk) is typically

smaller than the vocabulary size V . In such cases, the convergence rate deteriorates rapidly
as the total number of segments

∑K
k=1 Sk used in TOPIC-PYP increases. Therefore, to

guarantee the statistical efficiency of TOPIC-PYP, we do not expect the change points
occur too frequently, and meanwhile avoid selecting an excessively large number of topics
for the model.
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4. Experiments on Synthetic Data

4.1 Experimental setup and evaluation

In this section, we first evaluate the change point detection performance of TOPIC-PYP on
synthetic data and then explore the stability of TOPIC-PYP on different hyperparameters.
We generally follow the generative process of TOPIC-PYP (as illustrated in Figure 2) to
generate the synthetic documents. Specifically, assume the total number of moments to be
T . At each time moment, there are Dt = 100 documents with 1 ≤ t ≤ T . The number of
words in each document is fixed as Nt,d = 100 with 1 ≤ d ≤ Dt and 1 ≤ t ≤ T . Assume the
whole vocabulary size is V = 1000 and the number of topics underlying the whole corpus is
K = 5. For easy comparison, we assume all topics share the same locations of the change
points. Specifically, we consider the following four scenarios.

• Scenario 1. We assume T = 10 and there exists one single change point (i.e., Qk = 1
with 1 ≤ k ≤ K). All change points are assumed to occur at the fifth moment, i.e.,
ik = 5

• Scenario 2. Assume T = 10 and each topic has two change points (i.e., Qk = 2),
which occur at the third and sixth moments, i.e., ik = (3, 6)>.

• Scenario 3. Assume T = 30 and there are Qk = 5 change points occurring at the
moments ik = (5, 10, 15, 20, 25)>

• Scenario 4. Assume T = 100 and the number of change points is Qk = 10. The
moments of change points are ik = (9, 18, 27, 36, 45, 54, 63, 72, 81, 90)>.

Among the four scenarios, Scenario 1 and Scenario 2 are simple cases with a small
number of change points, while Scenario 3 and Scenario 4 serve as more complicated
cases with a larger number of change points. In all settings, the hyperparameters in PYP
are set as a = 0.5 and b = 5. Other hyperparameters used in TOPIC-PYP are set as
γ = 0.1, α = 0.2, and λ = {λ0, λ1} = {2, 5}. We repeat the above data generation process
for B = 50 times.

After generating the synthetic documents, we apply the proposed TOPIC-PYP model
to perform topic change point detection. For comparison purposes, we compare it with five
methods. The first one is a unified state-of-the-art method Topic-CD (Lu et al., 2022). It
combines topic modeling and change point detection in a unified Bayesian framework. By
defining change points based on shifts in hyperparameters affecting topic-word distributions,
Topic-CD can detect significant changes occurring for all topics. The other four methods
are all two-stage methods, among which the first stage is to obtain the dynamic sequences of
topic-word distributions, and the second stage is to detect change points for each topic using
the resulting topic-word distributions. As for the first stage, we consider four methods.
They are, respectively, (1) the dynamic topic model (DTM, Blei and Lafferty, 2006b),
(2) the neural dynamic topic model (D-ETM, Dieng et al., 2019), (3) the Rolling LDA
method (Rieger et al., 2022), and (4) the aligned neural topic model (ANTM, Rahimi et al.,
2024). After obtaining the dynamic sequences of topic-word distributions in the first stage,
we try to detect the change points for each topic. To this end, we first use the cosine
similarity (Bruggermann et al., 2016) and the Jensen-Shannon divergence (Lau et al., 2012;
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Wang and Goutte, 2018) to measure the distance between any two topic-word probability
distributions in adjacent periods. Then three methods are applied to detect the change
points for each topic, including: (1) the threshold method (Bruggermann et al., 2016), (2)
the dynamic programming method (Truong et al., 2020), and (3) the binary segmentation
method (Truong et al., 2020). In total, there are 2 × 3 = 6 methods to detect the change
points in the second stage. To implement different methods, we assume the true number
of topics K is already known. In addition, since the number of change points should be
predefined for two-stage methods, we assume the true number of change points is already
known for the two-stage methods.

We evaluate the performance of TOPIC-PYP from two perspectives. The first one
is the topic modeling performance, while the second one is the change point detection
performance. To evaluate the topic modeling performance, we use the coherence score (CS)
(Newman et al., 2010), which is popularly used to measure the quality of generated topics.
The basic idea of the coherence score is that words belonging to the same topic should have
a higher probability to co-occur within the same document. Specifically, let {w1, w2, ..., wL}
be the first L words with the highest probabilities for topic k. Define F (w) to be the number
of documents including word w, and F (w,w′) to be the number of documents including both
words w and w′. Then the coherence score of topic k is defined as:

CSk =
L∑
l=2

l−1∑
l′=1

log
F (wl, wl′ ) + 1

F (wl′ )
.

The higher the coherence score, the better the quality of the topic. After calculating the
topic coherence for each topic, we average among all topics to obtain the final topic coherence
score.

The second perspective is the change point detection performance. To this end, we

generally follow Lu et al. (2022) and use the following evaluation metrics. Let Q̂
(b)
k be the

estimated number of change points for topic k with 1 ≤ k ≤ K in the bth experiment.

Denote Ω̂
(b)
k = {t̂(b)1k . . . t̂

(b)

Q̂
(b)
k

} to be the estimated locations of the estimated change points

for topic k. Similarly, define Qk and Ωk to be the true number and locations of change

points for topic k. Define M
(b)
k =

∑Qk
q=1 I{t̂

(b)
qk ∈ (tq−h,k, tq+h,k)} as the number of correctly

detected locations for topic k, where I(·) is the indicator function and h is the bandwidth.
Then, the precision and recall of detected change points are defined as follows,

Precision =
1

BK

B∑
b=1

K∑
k=1

(
|M (b)

k |/|Ω̂
(b)
k |
)
,Recall =

1

BK

B∑
b=1

K∑
k=1

(
|M (b)

k |/Ωk|
)
.

Here | · | is a counting function. Except for precision and recall, we also adopt the com-
monly used P score and WindowDiff to measure the change point detection performance.
Both two measures use a moving window with bandwidth h = T/2 to check whether the
partitions split by the change points are correct. The lower the two measures, the better
the performance of change point detection. See Pevzner and Hearst (2002) and Lu et al.
(2022) for the detailed definition of P score and WindowDiff.
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4.2 Main comparison results

We employ the Gibbs sampling method to estimate TOPIC-PYP. In all scenarios, each
experiment runs for 50 iterations, which is sufficient to achieve convergence. A detailed
convergence check is provided in Appendix B.1. After model estimation, we compare the
performance of TOPIC-PYP with the other methods. We first focus on the performance
of topic modeling, which is evaluated by the coherence score. To compute this measure,
we set L = 10 for illustration purpose. Table B.5 presents the coherence score results of
different methods. As shown, the TOPIC-PYP model consistently achieves the highest co-
herence score across all scenarios, indicating that it generates topics of the highest quality.
In addition, we find both unified methods (i.e., TOPIC-PYP and Topic-CD) have achieved
significantly better results than the two-stage methods. This finding suggests that, when
change points indeed exist in dynamic documents, incorporating them into the topic mod-
eling process (i.e., the unified methods) would result in higher-quality topics than ignoring
their presence (i.e., the two-stage methods).

Table 1: The comparison results of coherence score for different methods in four scenarios.

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

Unified
TOPIC-PYP 29.065 22.640 15.418 6.754

Topic-CD 22.192 18.349 15.179 6.150

Two-Stage

DTM 0.721 0.658 0.658 0.289
D-ETM 1.285 0.859 0.674 0.538

Rolling LDA 3.826 3.342 2.916 2.857
ANTM 0.479 0.338 0.781 0.064

Next, we compare the change point detection performance of different methods. To
denote the two-stage methods, we use “CS” and “JS” to represent the distance measures
cosine similarity and Jensen-Shannon, and use “BS”, “DP”, and “T” for the three offline
change point detection methods, i.e., the dynamic programming, binary segmentation, and
threshold method, respectively. It results in a total of six versions for each two-stage method.
It is notable that, ANTM employs a clustering approach to documents. Then topics are
identified by summarizing the meanings of each cluster. As a fully unsupervised method,
it does not allow for predefining the number of topics. Consequently, the number of topics
may vary across different time points. Therefore, to find the change point among topics, it
is required to manually identify the change points by comparing the extracted topics across
different time points. Due to this limitation, we exclude ANTM from the evaluation of
change point detection performance in experiments on syngenetic datasets.

We first focus on the change point detection performance evaluated by the P score
and WindowDiff. Table B.3 summarizes the experimental results. As shown, TOPIC-PYP
achieves substantially lower P score and WindowDiff than the other methods in nearly
all scenarios. These results suggest that TOPI-PYP has a better performance of change
point detection. It is important to note that, two-stage methods require prior knowledge
of the number of change points. In our experiments, we assume the two-stage methods
already know the true number of change points. However, our TOPIC-PYP method does
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not require the number of change points to be determined in advance. Similarly, Topic-CD
also does not require prior knowledge of the number of change points. This distinction
highlights the advantage of unified methods over two-stage methods.

Table 2: The comparison results of P score (PS) and WindowDiff (WD) for different meth-
ods in four scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4
Method PS WD PS WD PS WD PS WD

TOPIC-PYP 0.010 0.070 0.001 0.073 0.025 0.038 0.038 0.036
Topic-CD 0.092 0.243 0.318 0.350 0.050 0.050 0.143 0.287

DTM

CS DP 0.367 0.367 0.017 0.217 0.250 0.250 0.250 0.275
CS BS 0.367 0.367 0.058 0.342 0.225 0.268 0.288 0.338
CS T 0.233 0.233 0.083 0.242 0.125 0.111 0.161 0.238
JS DP 0.342 0.342 0.033 0.267 0.215 0.215 0.275 0.275
JS BS 0.342 0.342 0.058 0.292 0.220 0.220 0.294 0.319
JS T 0.251 0.251 0.051 0.151 0.133 0.133 0.097 0.156

D-ETM

CS DP 0.300 0.300 0.001 0.001 0.325 0.275 0.275 0.317
CS BS 0.200 0.200 0.375 0.500 0.050 0.050 0.333 0.319
CS T 0.250 0.250 0.450 0.525 0.200 0.200 0.264 0.264
JS DP 0.300 0.300 0.001 0.001 0.050 0.050 0.195 0.236
JS BS 0.300 0.300 0.150 0.200 0.125 0.125 0.195 0.250
JS T 0.100 0.100 0.450 0.525 0.150 0.050 0.275 0.275

Rolling LDA

CS DP 0.500 0.500 0.075 0.100 0.050 0.050 0.250 0.275
CS BS 0.500 0.500 0.075 0.100 0.220 0.220 0.362 0.350
CS T 0.575 0.575 0.375 0.375 0.075 0.075 0.131 0.183
JS DP 0.200 0.200 0.375 0.500 0.222 0.222 0.275 0.300
JS BS 0.200 0.200 0.375 0.500 0.050 0.093 0.294 0.319
JS T 0.625 0.625 0.625 0.750 0.222 0.175 0.235 0.250

We further compare the change point detection performance using precision and recall.
We consider different bandwidths as h = 0, 1, 2. Note that when h = 0, the precision and
recall correspond to the performance of “accurately detected” change point locations. When
h > 0, the detected change points are allowed in a flexible interval centered by the true
locations. Table 3 summarizes the results under Scenario 4, and the corresponding results
under the other three scenarios are present in Appendix B.2 for brevity. In general, the
results under different scenarios are similar, leading to the following conclusions. First, when
h = 0, the TOPIC-PYP model achieves significantly higher precision and recall compared
to all the other methods. Second, when h > 0, TOPIC-PYP maintains strong change point
detection performance, with precision and recall consistently exceeding 0.9. Third, as h
increases, all methods show improved precision and recall. Throughout this process, some
competitors do outperform TOPIC-PYP occasionally. Finally, when h = 2, all methods
achieve excellent results, as the conditions for detecting change points become very relaxed.

Last, we discuss the computational efficiency of TOPIC-PYP. To this end, we calculate
the running time for different methods. For the unified methods, including our proposed
TOPIC-PYP and Topic-CD, we measure the total runtime for the entire process. In con-
trast, for the two-stage methods, we only account for the runtime of topic modeling (i.e.,
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Table 3: The comparison results of precision and recall for different methods with h = 0, 1, 2
under Scenario 4.

Precision Recall
Method h = 0 h = 1 h = 2 h = 0 h = 1 h = 2

TOPIC-PYP 0.709 0.973 0.973 0.850 0.920 1.000
Topic-CD 0.625 0.950 0.950 0.763 0.925 0.950

DTM

CS DP 0.275 0.675 1.000 0.275 0.581 0.950
CS BS 0.300 0.725 1.000 0.300 0.725 1.000
CS T 0.450 0.800 1.000 0.450 0.725 1.000
JS DP 0.275 0.650 0.975 0.275 0.650 1.000
JS BS 0.350 0.725 0.975 0.350 0.800 1.000
JS T 0.347 0.656 1.000 0.347 0.656 1.000

D-ETM

CS DP 0.450 0.875 1.000 0.450 0.875 1.000
CS BS 0.450 0.725 1.000 0.450 0.725 1.000
CS T 0.625 0.875 1.000 0.550 0.750 1.000
JS DP 0.500 0.725 0.975 0.500 0.650 1.000
JS BS 0.450 0.656 0.900 0.200 0.656 0.950
JS T 0.500 0.950 1.000 0.500 1.000 1.000

Rolling LDA

CS DP 0.450 0.800 1.000 0.450 0.800 1.000
CS BS 0.225 0.625 1.000 0.225 0.625 1.000
CS T 0.243 0.865 1.000 0.275 0.725 1.000
JS DP 0.250 0.725 0.975 0.375 0.725 1.000
JS BS 0.500 0.800 0.975 0.500 0.750 1.000
JS T 0.450 0.950 1.000 0.625 1.000 1.000

the first stage), as the second stage of change point detection is extremely fast. The im-
plementation details and results can be found in Appendix B.3. The main findings are as
follows. Compared to two-stage methods, the unified methods (including both TOPIC-PYP
and Topic-CD) have significantly longer running time. This is because the unified methods
combine topic modeling and change point detection, making the model structures more
complicated. In comparison to Topic-CD, the running time of TOPIC-PYP is generally
comparable, although slightly slower. However, TOPIC-PYP allows for change point de-
tection for each individual topic, whereas Topic-CD can only detect change points that are
shared across all topics. This is the trade-off TOPIC-PYP makes in terms of computational
efficiency.

4.3 Influence of T and K

In this section, we explore the influence of period T and topic number K on the performance
of TOPIC-PYP. We basically follow the generation process described in Section 4.1 to
generate the synthetic documents. We then vary the period as T = [10, 20, 30] and the
number of topics as K = [5, 10, 15]. This leads to a total of 3× 3 = 9 experimental settings.
To generate the document-topic distributions, we set α = 0.2 for K = 5, while α = 0.1 for
K = 10 and 15. For illustration purposes, we consider two change points for each topic,
i.e., Qk = 2. Specifically, we set ik = (3, 6)> in the case of T = 10. That is, at the third
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and sixth moments, all topics have change points. In cases of T = 20 and T = 30, we set
ik = (6, 12)> and ik = (10, 20)>, respectively.

The averaged precision and recall in each experimental setup are reported in Figure
3. Except for precision and recall, we also compute the accuracy, which is defined as
accuracy =

∑
k,t I (̂ik,t = ik,t)/T , where îk,t is the true counterpart of ik,t. As shown, the

accuracy of the TOPIC-PYP model is always above 94%, and the recall of TOPIC-PYP
can also be as high as 92%. These results indicate that the estimated locations of change
points can better cover the true ones. The good performance of TOPIC-PYP is also robust
to different periods and the number of topics. In addition, as the period T increases, the
precision of TOPIC-PYP decreases, but the recall can always remain higher than 90%.
This finding indicates that TOPIC-PYP has a strong recognition ability for the true change
points, but it might find more change points when the period is relatively long.

(a) (b)

Figure 3: The left panel presents the precision and recall for different T and K, and the
right panel presents the accuracy for different T and K.

4.4 Inference of hyperparameters

We examine the impact of hyperparameters on the performance of the TOPIC-PYP model.
To this end, we consider Scenario 2 for illustration, which assumes the presence of two
change points within a time period of T = 10. We generally follow the experimental settings
in Section 4.1. For the hyperparameters, we set a = 0.5, b = 5, λ = {2, 5}, α = 0.1, and
γ = 0.1 for illustration. We refer to this setup of hyperparameters as “baseline”. Next,
we vary the value of each hyperparameter while keeping the others fixed. We mainly focus
on the hyperparameters of PYP, since the Pitman-Yor process is an important step in our
proposed model. There are two hyperparameters a and b in this process. Thus we are
interested to investigate the influence of a and b. The detailed results in different settings
are reported in Figure 4. As shown, the accuracy of change point detection is always above
90%. In addition, in the case of b = 5, as a increases, we find both precision and accuracy
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gradually increase, but the recall decreases. In the case of a = 0.5, when b increases,
the precision gradually increases, the recall decreases, and the accuracy remains nearly
unchanged. The investigation of other hyperparameters in TOPIC-PYP (i.e., λ, α, and γ)
can be found in Appendix B.4. Results show that varying the values of λ, α, and γ has
little effect on the change point detection performance of the TOPIC-PYP model.

(a) fix a = 0.5 (b) fix b = 5

Figure 4: The precision, recall, and accuracy for different combinations of (a, b) used in the
data generation process.

Last, we investigate the robustness of model performance when using the incorrect
hyperparameters in the PYP process. We take the case with a = 0.5 and b = 5 in the
data generation process as an example. Table 4 presents the used a and b when estimating
the TOPIC-PYP model and also lists the corresponding results. As shown, when using the
incorrect hyperparameters, the high accuracy of topic change point detection can still be
achieved, since the accuracies of all setups are above 96%. The values of recall are also close
to 100%. These findings indicate that TOPIC-PYP is robust to the used hyperparameters
of PYP in model estimation.

Table 4: The precision, recall, and accuracy under different combinations of (a, b) used in
the estimation of TOPIC-PYP.

Case 1 Case 2 Case 3 Case 4 True
aused 0.1 0.9 0.5 0.5 0.5
bused 5 5 1 100 5

Precision 0.84 0.93 0.9 0.97 0.92
Recall 1.00 1.00 0.98 1.00 1.00

Accuracy 0.96 0.98 0.97 0.99 0.99
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5. Experiments on the Journal Dataset

5.1 Data description

Research papers published in top-tier journals often explore cutting-edge topics. Conse-
quently, identifying the change points within the stream of published papers can effectively
capture the evolution patterns within a particular discipline. For illustration purposes, we
take the statistical journal dataset as an example. Specifically, according to the number
of journal citations in the Web of Science (i.e., the Journal Citation Report in 2019), ten
journals with the highest number of citations are selected under the category of Statistics
and Probability. To get relatively focused topics, we drop two journals on applied statistics
and two journals on economic statistics. The final dataset contains six statistical journals,
including Stochastic Processes and their Applications (SPA), Computational Statistics &
Data Analysis (CSDA), The Annals of Statistics (AOS), Journal of the American Statisti-
cal Association (JASA), Statistics and Computing (SC), and Journal of the Royal Statistical
Society: Series B (JRSSB), following a decreasing order of number of citations. Among
them, SPA mainly publishes papers related to the stochastic process; CSDA and SC mainly
focus on computational statistics; while AOS, JASA, and JRSSB are widely recognized
theoretical research journals in statistics. For each journal, we collect its published papers
from 2005 to 2019. This leads to 7954 papers in total. For each paper, we collect its title,
abstract, authors, and publication year.

After data collection, we apply TOPIC-PYP on the Journal dataset to explore the
change points underlying the published papers. We mainly focus on the title and abstract
of each paper, since they are the summary of the paper’s content. We conduct some pre-
processing steps before topic modeling. Specifically, we first merge the title and abstract
for each paper. Then we use the nltk library in Python to remove numbers, punctuations,
stop words, and words with lower frequency than 20 or appearing in less than 0.0005% of
the whole documents. This leads to a vocabulary of 5034 words and a paper corpus of 7954
documents. The average number of words in each document is about 70.

(a) annual number of papers (b) wordcloud of Top 50 words

Figure 5: The left panel presents the number of papers for each journal per year in the
journal dataset, and the right panel is the wordcloud of the top 50 words with
the highest frequency.
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The left panel in Figure 5 presents the number of papers for each journal per year.
Generally, the number of papers ranges from 460 to 600, with no obvious temporal pattern.
As for different journals, we find the annual number of papers published by SPA is the
largest (around 150), while those of CSDA, AOS, and JASA are all close to 100. The
annual numbers of papers published by SC and JRSSB are relatively small (below 75).
We then explore the textual content of the published papers. The right panel in Figure 5
presents the wordcloud of the top fifty words with the highest frequency in the dataset. As
shown, the words “estimator”, “regression” and “algorithm” enjoy high frequency in the
Journal dataset.

5.2 Change point detection

To detect the change point in the Journal dataset, we apply the TOPIC-PYP model. With
some preliminary analysis, we set the number of topics as K = 20. As for the hyperparam-
eters, we set γ = 0.1, a = 0.5, b = 5, α = 0.1, and λ = {2, 5} for illustration purpose. After
estimation of TOPIC-PYP, we find Topic 1 and Topic 15 have one change point in the year
2016, while the other topics have no change points. In topic models, the meaning of topics
is often characterized by its high probability words in the topic-word distributions, which
we refer to as the representative words. To explore the changing meanings of Topic 1 and
Topic 15, we present the fifteen representative words with the highest probabilities for each
topic before and after the change point. The detailed results are summarized in Figure 6.
As for the other eighteen topics, their topic meanings are summarized in Appendix B.5.

Figure 6: The representative words under Topic 1 and Topic 15 before and after the change
point occurring at year 2016. Words in bold are shared by both periods before
and after the change point, while words in red are typical to one period.
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As shown, Topic 1 mainly discusses Bayesian analysis, since some representative words
with high probabilities include “Bayesian”, “prior”, “posterior”, and “distributions”. Some
typical representative words before the change point include “mixture”, “likelihood”, and
“nonparametric”, indicating the research interests mainly focus on nonparametric Bayesian
methods and mixture Bayesian methods. After the change point, some typical words “high”,
“dimensional”, and “sparse” appear, indicating Bayesian research has turned its focus on
high-dimensional Bayesian methods and sparse Bayesian methods.

As for Topic 15, its representative words include “algorithm”, “sampling”, “month”,
“Carlo”, “Markov”, “chain”, and “MCMC”, which indicate this topic mainly discusses the
Markov chain Monte Carlo (MCMC) algorithm. Before the change point, some typical words
under this topic include “effective” and “adaptive”, indicating that the MCMC method
focuses on efficiency and adaptability of the algorithm in the early stage. After the change
point, some typical words “approximate” and “optimal” have appeared. These results
show that the MCMC algorithm puts more emphasis on optimization and approximation
solutions for complex problems. Note that MCMC algorithms are often used for Bayesian
models. Therefore the two topics share the same location of change point. This consistency
also verifies the accuracy of the TOPIC-PYP model to some extent.

To further display the changes in topic meanings for Topic 1 and Topic 15, we investigate
the frequency trend of some representative words across time. For each topic, we select four
representative words. Figure 7 shows the annual frequency of documents containing each
selected word. As shown, the word “Bayesian” in Topic 1, and the word “MCMC” in Topic
15 show no obvious dynamic patterns over time. This is because these two words indicate
the key meanings of the two topics. The frequency of the word “nonparametric” in Topic
1 gradually decreases, while the frequencies of “dimensional” and “sparse” increase over
time. A similar phenomenon is obtained for Topic 15. For example, the words “optimal”
and “approximate” show increasing frequency over time.

6. Experiments on the Twitter Dataset

6.1 Data description

We apply TOPIC-PYP on a Twitter dataset to demonstrate its change point detection
performance. Compared with the Journal dataset, texts in the Twitter dataset are relatively
shorter. To collect the Twitter dataset, we choose the brand Burger King as an example.
We use the Python package scweet to obtain daily tweets containing the keyword “Burger
King” or its other variants. The collection period is from March 15, 2016, to April 11,
2016. This leads to a total of 28 time periods. During this period, Burger King released
a new product (the Angriest Whopper) on March 29, 2016. There also existed other hot
events related to Burger King from March 15 to April 10, which are summarized in Table
5. Therefore, the goal of analyzing this dataset is to explore change points related to the
new product release and the hot events.

Before model building, we conduct pre-processing steps on the Twitter dataset, which
are similar to those on the Journal dataset. After pre-processing, the dataset contains 24187
tweets with a vocabulary of V = 8756. By some preliminary analysis, we find the average
length per tweet is about 10 words. The daily average number of tweets is around 750. The
dynamic trend of the number of tweets is shown in the left panel of Figure 8. As shown,
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Figure 7: The annual frequencies of some representative words under Topic 1 and Topic 15.
The left panel represents four words (i.e., “Bayesian”, “nonparametric”, “dimen-
sional”, and “sparse”) selected from the meaning of Topic 1; while the right panel
represents four words (i.e., “MCMC”, “optimal”, “approximate”, and “adaptive”)
selected from the meaning of Topic 15.

Table 5: Five hot events in the Tweeter dataset.
Date Hot Events Indix

March 22
People are rallying around a Burger King ad after the Brussels
terrorist attacks.

E1

March 23
FullContact buys Brewsterś technology after team got acqui-hired
by Burger King owner RBI.

E2

March 24
A customer overheard a Burger King worker mock a fallen
police officer.

E3

April 1
Gay man brutally attacked at a Miami Beach Burger King for
kissing his boyfriend.

E4

April 9
Prank caller convinces Burger King employees to smash their
windows.

E5

on March 29th, when the new product was released, the number of tweets increased to
1250. Subsequently, the number of tweets began to decline to around 750. Then around
the hot event E5, there was a noticeable increase in the number of tweets, indicating a hot
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discussion about this event. As shown in the right panel of Figure 8, the frequently used
words include “hot” and “whopper”. The uninformative words “burger king” and “http”
have been removed from the figure.

(a) daily number of tweets (b) wordcloud of Top 50 words

Figure 8: The left panel is the daily number of tweets in the Twitter dataset, and the right
panel is the wordcloud of the top 50 words with the highest frequency.

6.2 Change point detection

After pre-processing, we conduct TOPIC-PYP on the Twitter dataset to find topic change
points. We set the number of topics as K = 5, since the whole Twitter dataset focuses
on Burger King and the tweets are relatively short. The hyperparameters are set as the
same as those used in the Journal dataset. By TOPIC-PYP, we find a total of twenty-seven
change points for five topics. The specific locations of these change points are shown in
Figure 9.

Figure 9: The location of change points (marked by the colored boxes) for five topics in the
Tweeter dataset.
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As shown, for Topic 1, we do not find any change points. Topic 2 has 13 change points
and Topic 3 has 10 change points. In addition, Topic 2 and Topic 3 share some same
locations of change points. The numbers of change points associated with Topic 4 and
Topic 5 are relatively small. In general, the detected change points are consistent with the
occurring time of the new product release and the five hot events.

Next, we conduct a deeper analysis of the detected change points of each topic. Figure
10 presents the representative words with high frequency for five topics in each period
segmented by the change points. In general, we find our TOPIC-PYP successfully identifies
topic-level transitions in the Twitter dataset that align with the real-life events. These
topical shifts illustrate the model’s effectiveness in identifying meaningful change points
and uncovering temporally coherent patterns. For instance, the release time of the new
Angriest Whopper product has been detected as a change point by Topic 2 and Topic
3. Note that, Angriest Whopper is a spicy red bread burger. Tweets discussing Angriest
Whopper often use words such as “red bun” and “hot”. Event E2 (occurred on March 23)
aligns with a topic shift in Topic 2 identified by TOPIC-PYP. This shift highlights the words
“brewster” and “technology”, coinciding with FullContact acquiring Brewster’s technology
after the team joined Burger King’s owner. Similarly, Event E3 (occurred on March 24)
matches another change point identified by Topic 2, as words like “officer”, “police”, and
“fallen” rise to prominence after a Burger King worker mocked a fallen police officer. Other
events show similar patterns. For example, the introduction of the Angriest Whopper (late
March to early April) leads to shifts in Topics 2 and 3, with words like “angriest”, “red”
and “bun” becoming prominent. The Belgian terrorist attacks (Event E1 on March 22)
are reflected in Topic 3 through words like “brussels”, “attacks” and “rallying”. Violent
incidents, such as the assault of a gay man at a Miami Beach Burger King (Event E4 on
April 1), trigger a change in Topic 2, surfacing words like “gay”, “attacked”, and “kissing”.
Finally, the prank involving employees smashing store windows (Event E5 on April 9)
generates new change points in Topics 2 and 3, with words like “prank”, “windows” and
“smash” appearing suddenly. In summary, we find TOPIC-PYP can capture topic changes
in everyday discussions. It also adapts dynamically to breaking news and unexpected events.
This ability creates a temporal narrative that mirrors real-world developments.

6.3 Model comparison

For comparison purposes, we also analyze the Twitter dataset using the other models except
TOPIC-PYP. Consistent with the experiments on synthetic datasets, we consider Topic-CD
(Lu et al., 2022), DTM (Blei and Lafferty, 2006b), D-ETM (Dieng et al., 2019), Rolling
LDA (Rieger et al., 2022), and ANTM (Rahimi et al., 2024) as five competitors. Then we
compare TOPIC-PYP with these methods from two perspectives. The first perspective is
the topic modeling performance, which is evaluated by the coherence score. As shown by
Table 6, TOPIC-PYP achieves the highest coherence score among all methods, indicating
that the topics generated by TOPIC-PYP are of the highest quality.

The second perspective is the performance of change point detection. Note that in real
data analysis, the true change points are typically unknown. To address this issue, we
attempt to leverage the real-world context of the data. As we mentioned before, during the
time period for analysis, Burger King launched a new product, and five other hot events
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Figure 10: The representative words of five topics extracted in the Twitter dataset. For
each topic, we show the changes of representative words in each period split by
the detected change points.

occurred. These six events are likely to cause shifts in public opinion and can therefore
be treated as potential change points. Therefore, we regard the six events as the true
change points and compare the detection accuracy of different methods in catching these
six change points. The results are shown in Table 7. It is noteworthy that, the DTM, D-
ETM, and Rolling LDA methods are combined with a second stage of change point detection
algorithms. As for ANTM, we have to manually identify the change points by comparing
the extracted topics at different time points. For each method, we consider an event to be
successfully detected, if at least one topic identifies the occurrence time of the event as a
change point. As shown, both TOPIC-PYP and Topic-CD successfully detect the six events
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as change points, achieving a detection accuracy of 100%. However, Topic-CD identifies a
total of 16 change points and forces all five generated topics to include these 16 change
points. It is because of this strict requirement, Topic-CD results in poorer topic quality
compared to TOPIC-PYP, as evident from the results shown in Table 6. The detection
performances of the other methods (including DTM, D-ETM, Rolling LDA, and ANTM)
are all very poor. For example, none of these methods identifies the new product release as
a change point, which is a highly significant event within the analysis time period.

Table 6: The coherence score of different methods on the Twitter dataset.

TOPIC-PYP Topic-CD DTM D-ETM Rolling LDA ANTM

6.990 1.689 0.220 2.118 0.078 0.036

Table 7: The detection results of different methods for the new product release and five hot
events. The total detection accuracy is also reported.

Method New Product E1 E2 E3 E4 E5 Accuracy
TOPIC-PYP X X X X X X 100%

Topic-CD X X X X X X 100%

DTM

CS DP X X X 50%
CS BS X X X 50%
CS T X X X X 67%
JS DP X X X X 67%
JS BS X X X X 67%
JS T X X X X 67%

D-ETM

CS DP X X X 50%
CS BS X X X 50%
CS T X X X 50%
JS DP X X X 50%
JS BS X X X 50%
JS T X X X 50%

Rolling LDA

CS DP X X X 50%
CS BS X X X 50%
CS T X X X 50%
JS DP X X X 50%
JS BS X X X X 67%
JS T X X X 50%

ANTM X X 33%

7. Conclusion and Discussion

In this work, we present a novel change point detection model called TOPIC-PYP, which
uses the Pitman-Yor process to model the changing meanings of each topic over time.
This approach combines topic modeling and topic-level change point detection in a unified
framework and is evaluated using a series of experiments on both synthetic and two real
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datasets. Compared with the state-of-the-art methods in topic change point detection, we
demonstrate the effectiveness of TOPIC-PYP in detecting fine-grained changes for each
topic over time.

There are several directions for future work. First, one can explore other Bayesian
nonparametric processes for change point detection in topic models, such as the Polya
tree process, the hierarchical Dirichlet process, and the Indian buffet process. Second, as
a probabilistic topic model, TOPIC-PYP has some limitations compared to neural topic
models, particularly in capturing complex relationships and handling large-scale dynamic
documents. Thus we aim to extend TOPIC-PYP by incorporating modern deep learning
techniques in the future. For instance, we can embed words into a semantic embedding
space using LLMs or leverage neural network architectures (e.g., variational autoencoders)
to improve the modeling performance. Third, although we have established the posterior
consistency properties for I and Φ, deeper asymptotic analysis for other parameters is of
great interest and could offer additional insights. This is a promising direction for future
research. Last, due to the complex structure of TOPIC-PYP, its computational efficiency
is not very high. This constitutes one of the main limitations of TOPIC-PYP. Therefore,
further improving the computational efficiency of TOPIC-PYP should be an important area
for future research.
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Appendix A. Technical Materials for TOPIC-PYP

A.1 Understanding PYP using the Chinese restaurant process

The Pitman-Yor process can also be described from the perspective of the Chinese restaurant
process (CRP). CRP is a sampling perspective on the Pitman-Yor process. It explains how
samples (e.g., words) are drawn given the distribution from the Pitman-Yor process. Below,
we provide a detailed description.

Imagine that we need to select a sequence of words w1, w2, .... For each word wi, we
already know it represents topic k, i.e., zi = k. Then under a segment s, wi follows a
multinomial distribution with parameter φk,s. Thus the target here is to select a specific
value vi for wi from the vocabulary using the above multinomial distribution. To describe
PYP using the Chinese restaurant process, we assume each word wi refers to a new customer
entering the restaurant, its corresponding topic indicator zi refers to a table, and the selected
value vi from the vocabulary refers to the dish enjoyed by the customer. Recall that, each
time a new customer (word) enters the restaurant, it should make two choices. First, it
should choose a table (topic). In this step, it either chooses an existing table (topic) or a
new table (topic). After sitting at the table, it should choose a dish (value in vocabulary)
on the table. If the customer joins an existing table, it automatically selects the dish on
that table. Note that each table can only have one dish. If the customer opens a new table,
it selects a dish from the menu hk. Let N be the total number of customers. LetM contain
the indices of customers choosing to open new tables, and M be the corresponding count.
Thus M is also the count of tables. For the mth table with m ∈ M, let vm be the dish on
the table. Then let nvm be the count of dish vm selected by N customers. To assist the
mathematical derivations for model estimation, we further denote τvm to be the count of
dish vm selected but by new tables. In other words, τvm is the count of new tables associated
with the dish vm. Note that τvm ≥ 1, since a dish can be selected by more than one table.
We should also have M =

∑
m∈M τvm . In addition, since a dish vm can be selected by more

than one customer, we should have τvm ≤ nvm .

Based on the above notations, the Pitman-Yor process can be described in the following
steps; see also Figure A.1 for an illustration.

Step 1 When the first customer w1 walks into the restaurant, he/she decides to open a new
table and then select a dish v1 from the menu hk. Thus, in this step, we have N = 1
and M = 1. For dish v1, we have nv1 = 1 and τv1 = 1.

Step 2 When the second customer w2 walks into the restaurant, he/she sees that there already
exists one table. Assume he/she decides to open a new table with the probability of
(b+ a)/(b+ 1), and selects the dish v2 for this table from the menu hk. Then in this
step, we have N = 2,M = 2, nv1 = 1, τv1 = 1 for dish v1, and nv2 = 1, τv2 = 1 for dish
v2.

Step 3 When the third customer w3 enters the restaurant, he/she sees two tables, and he/she
can open the new table with the probability (b + 2a)/(b + 2), or sits next to the
customer w1 or w2 with the probability (1−a)/(b+ 2). Assume that the customer w3

sits at the table that customer w1 selected, and then automatically selects the dish v1
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on that table. Then in this step, we have N = 3 and M = 2, nv1 = 2, τv1 = 1 for dish
v1, and nv2 = τv2 = 1 for dish v2.

Generally, when the (N + 1)-th customer wN+1 enters the restaurant, he/she observes
M existing tables, which opened by customers in the set M. For the table selected by the
mth customer with m ∈ M, it is associated with a dish vm from the menu hk. Note that
a dish vm may be selected by more than one customer on more than one table. The total
number of customers selecting the dish vm is nvm . Then for the (N + 1)-th customer, the
probability of joining an existing table m is proportional to nvm−a, where a is the discount
parameter; while the probability of opening a new table is proportional to b + aM , where
b is the concentration parameter. Formally, the probabilities of choosing tables are:

P (join table m) =
nvm − a
b+N

, P (open new table) =
b+ aM

b+N
.

After sitting at the selected table, the customer further selects a dish. If the customer joins
an existing table m, he/she automatically selects the dish vm on the table. If the customer
opens a new table, he/she selects a dish vN+1 from the menu hk, i.e., from the multinomial
distribution defined by hk.

Figure A.1: Illustration of the Chinese restaurant process for PYP

A.2 The derivation details of joint posterior distribution

In this section, we give the detailed derivations of the joint posterior distribution. Recall
the joint posterior distribution of all variables {Π,H, I,Φ,Θ,Z,∆} is given below.

f(Π, I,H,Φ,Θ,Z,∆|W,Ξ)

∝f(Π | λ0, λ1)f(I | Π)f(H | γ)f(Φ | a, b,H)f(Θ | α)f(Z | Θ)f(W,∆ | Φ,Z, I).

We aim to simplify the posterior distribution. To this end, we take the following steps by
integrating out Π, Θ, Φ and H.

• Step 1: Integrate out Π.

Note that the variable Π only appears in f(Π | λ0, λ1) and f(I | Π). Each πk follows the
Beta distribution with parameters λ0 and λ1 and each ik,t follows the Bernoulli distribution
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with parameter πk. Then we have

f(Π | λ0, λ1) =
K∏
k=1

1

Beta (λ0, λ1)
πλ0−1
k (1− πk)λ1−1 ,where πk ∈ (0, 1).

f(I | Π) =

K∏
k=1

T∏
t=1

π
ik,t
k (1− πk)(1−ik,t) ,where ik,t ∈ {0, 1}.

Since the Beta distribution and Bernoulli distribution are conjugate, we can integrate
out Π and have

f(I|λ0, λ1) =

∫
f(Π | λ0, λ1)f(I | Π)dΠ =

K∏
k

Beta(λ0 +
∑T

t=1 ik,t, λ1 + T −
∑T

t=1 ik,t)

Beta(λ0, λ1)
.

(A.1)

• Step 2: Integrate out Θ.

Note that Θ appears in f(Θ | α) and f(Z | Θ). The prior distribution for each θt,d is
Dirichlet with parameter α and the probability distribution for each zt,d,n is multinomial
with parameter θt,d. Then we have

f(Θ | α) =
1

BetaK(α)

T∏
t=1

Dt∏
d=1

K∏
k=1

(θt,d,k)
α−1,

f(Z | Θ) =

T∏
t=1

Dt∏
d=1

K∏
k=1

(θt,d,k)
∑

vmk,t,d,v ,

where mk,t,d,v represents the number of word v under topic k in document d at time t. Then∑
vmk,t,d,v represents the summation of mk,t,d,v over all V words in the dictionary. We can

easily verify that
∑

vmk,t,d,v =
∑Nt,d

n=1 I(zt,d,n == k). That is,
∑

vmk,t,d,v equals to the
total number of words representing topic k in document d at time t. Then by integrating
out Θ, we have

f(Z | α) =

∫
f(Θ | α)f(Z | Θ)dΘ =

T∏
t=1

Dt∏
d=1

BetaK (
∑

vmt,d,v + α)

BetaK(α)
, (A.2)

where
∑

vmt,d,v = (
∑

vm1,t,d,v, . . . ,
∑

vmK,t,d,v)
> is a vector with K dimension.

• Step 3: Integrate out Φ.

Given each φk,s follows the Pitman-Yor process and also involves in the likelihood of
words, it is not easy to integrate out Φ. To this end, we refer to Theorem 17 in Buntine and
Hutter (2010). Specifically, we need to involve an augmentation variable T . Recall in the
Chinese restaurant process described in Appendix A.1, we define the count variables τvm
and nvm for dish vm. We then extend this definition to the setup of TOPIC-PYP. Let τk,s,v
be the count of new tables with the selected word v representing topic k in segment s. Then
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let Tk,s =
∑

v τk,s,v, and T = {τk,s,v, k = 1, . . . ,K, 1 ≤ s ≤ Sk, 1 ≤ v ≤ V }. Let nk,s,v be
the count of selected word v representing topic k in segment s. Then let Nk,s =

∑
v nk,s,v.

Based on Theorem 17 in Buntine and Hutter (2010), we have the following joint condi-
tional distribution by integrating out Φ, i.e.,

f(W, T | Z,a, b, I,H) =

∫
f(Φ | a, b,H)f(W, T | Φ,Z, I)dΦ

=

(
K∏
k=1

Sk∏
s=1

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a

)
×

(
K∏
k=1

V∏
v=1

h
∑

s τk,s,v
k,v

)
.

(A.3)

Here (x)N denotes the Pochhammer symbol, i.e., x(x+1) . . . (x+N−1) and (x|y)N denotes
the Pochhammer symbol with increment y, i.e., x(x + y) . . . (x + (N − 1)y). SNM,a is a

Stiring number of the second kind with a linear recursion, i.e., SN+1
M,a = SNM−1,a + (N −

Ma)SNM,a. Please see Lemma 14 and Lemma 16 in Buntine and Hutter (2010) for more
detailed definitions.

• Step 4: Integrate out H.

Note that we have f(H | γ) by definition, i.e.,

f(H | γ) =
K∏
k=1

f (hk | γ) =
K∏
k=1

f (hk | γ) =
K∏
k=1

1

BetaV (γ)

V∏
v=1

hγ−1
k,w

=

(
K∏
k=1

1

BetaV (γ)

)
×

(
K∏
k=1

V∏
v=1

hγ−1
k,w

)
.

(A.4)

Then combining (A.3) and (A.4), we can integrate out H and have the following

f(W, T | Z, a, b, I, γ) =

∫
f(W, T | Z, a, b, I,H)f(H | γ)dH

=

(
K∏
k=1

Sk∏
s=1

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a

)
×

(
K∏
k=1

BetaV (
∑

s τk,s,v + γ)

BetaV (γ)

)
.

(A.5)

• Step 5: Replace T by ∆.

Based on the above four steps, we have the following

f(I,Z, T |W,Ξ) ∝ f(I | λ0, λ1)f(Z | α)f(W, T | Z, a, b, I, γ).

Note that f(I | λ0, λ1), f(Z | α), and f(W, T | Z, a, b, I, γ) are given in (A.1), (A.2),
and (A.5) respectively. Then we combine (A.2) and (A.5), which leads to

f(W,Z, T | a, b, I, γ, α) = f(W, T | Z, a, b, I, γ)f(Z | α)

=

(
K∏
k=1

Sk∏
s=1

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a

)
×

(
K∏
k=1

BetaV (
∑

s τk,s,v + γ)

BetaV (γ)

)

×

(
T∏
t=1

Dt∏
d=1

BetaK (
∑

wmt,d,w + α)

BetaK(α)

)
.

(A.6)
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Note that T indicates the sum of tables and ∆ serves as table indicator for each word.
Theorem 1 in Chen et al. (2011) gives the relationship between T and ∆, i.e.,

f(W, T ) =
K∏
k=1

Sk∏
s=1

V∏
v=1

nk,s,v!

τk,s,v!(nk,s,v − τk,s,v)!
f(W,∆). (A.7)

Then combining (A.6) and (A.7), we have the following

f(W,Z,∆ | I, a, b, γ, α) =

(
K∏
k=1

Sk∏
s=1

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a

τk,s,v!(nk,s,v − τk,s,v)!
nk,s,v!

)

×

(
K∏
k=1

BetaV (
∑

s τk,s,v + γ)

BetaV (γ)

)(
T∏
t=1

Dt∏
d=1

BetaK (
∑

vmt,d,v + α)

BetaK(α)

)
.

(A.8)

• Step 6: Obtain the final joint posterior distribution.

Finally, by combining (A.1) and (A.8), we can obtain the joint posterior distribution
f(I,∆,Z | W,Ξ) as follows.

f(I,∆,Z | W,Ξ) ∝ f(W,Z,∆, | I, a, b, γ, α)f(I | λ0, λ1)

∝

(
K∏
k=1

Sk∏
s=1

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a

τk,s,v!(nk,s,v − τk,s,v)!
nk,s,v!

)

×

(
K∏
k=1

BetaV (
∑

s τk,s,v + γ)

BetaV (γ)

)(
T∏
t=1

Dt∏
d=1

BetaK (
∑

vmt,d,v + α)

BetaK(α)

)

×

(
K∏
k=1

Beta(λ0 +
∑T

t=1 ik,t, λ1 + T −
∑T

t=1 ik,t)

Beta(λ0, λ1)

)
.

(A.9)

A.3 Derivation details of f(∆,Z|I,W,Ξ)

Given the joint posterior distribution f(I,∆,Z | W,Ξ) in (A.9), we can obtain the posterior
distribution of {∆,Z} as follows:

f(Z,∆ | I,W,Ξ) ∝ f(I,∆,Z | W,Ξ)

∝

(
K∏
k=1

Sk∏
s=1

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a

τk,s,v!(nk,s,v − τk,s,v)!
nk,s,v!

)

×

(
K∏
k=1

BetaV (
∑

s τk,s,v + γ)

BetaV (γ)

)(
T∏
t=1

Dt∏
d=1

BetaK (
∑

vmt,d,v + α)

BetaK(α)

)
.

(A.10)

Next, assume the number of word count variables and table count variables are those
excluding the n-th word in document d in the t-th moment (i.e., the word wt,d,n). Then we
can derive the posterior distribution of (Z,∆) without (zt,d,n, δt,d,n), which is similar with
(A.10). We denote it by f

(
Z(−t,d,n),∆(−t,d,n) | I,W,Ξ

)
. Further assume the value of wt,d,n

36



Fine-Grained Topic Change Point Detection

is v in the dictionary, the topic indicators (zt,d,n = k, δt,d,n = δ), and the corresponding
segment of time t is sk = s. Then we can derive the joint distribution of (Z(−t,d,n),∆(−t,d,n))
and (zt,d,n = k, δt,d,n = δ) as follows.

P
(
zt,d,n = k, δt,d,n = δ,Z(−t,d,n),∆(−t,d,n) | I,W,Ξ

)
=

 K∏
k∗=1

∏
s∗ 6=s

(b | a)Tk∗,s∗

(b)Nk∗,s∗

V∏
v∗=1

S
nk∗,s∗,v∗
τk∗,s∗,v∗ ,a

τk∗,s∗,v∗ ! (nk∗,s∗,v∗ − τk∗,s∗,v∗)!
nk∗,s∗,v∗ !


×

(b | a)T ′k,s
(b)N ′k,s

∏
v∗ 6=v

S
nk,s,v∗
τk,s,v∗ ,a

τk,s,v∗ ! (nk,s,v∗ − τk,s,v∗)!
nk,s,v∗ !

× Sn′k,s,v
τ ′k,s,v ,a

τ ′k,s,v!(n
′
k,s,v − τ ′k,s,v)!
n′k,s,v!

×

∏
k∗ 6=k

BetaV

(∑Sk
s∗=1 τk∗,s∗,v∗ + γ

)
BetaV (γ)

×
 T∏
t∗=1

Dt∏
(t∗,d∗) 6=(t,d)

BetaK

(∑V
v∗=1mt∗,d∗,v∗ + α

)
BetaK(α)


×

BetaV

(∑Sk
s∗=1 τ

′
k,s∗,v∗ + γ

)
BetaV (γ)

BetaK

(∑
v∗m

′
t,d,v∗ + α

)
BetaK(α)

.

(A.11)
Note that, in the above equation, the notations τk∗,s∗,v∗ , nk∗,s∗,v∗ and mk∗,t∗,d∗,v∗ for any
k∗, s∗, v∗ represent the corresponding values without the word wt,d,n. However, the notations
τ ′k,s,v, n

′
k,s,v and m′k,t,d,v are the corresponding counterparts adding the information of word

wt,d,n. It is noteworthy that, zt,d,n ∈ {1, 2, ...,K} and δt,d,n ∈ {0, 1}. We then derive
the posterior distributions for {zt,d,n = k, δt,d,n = 0} and {zt,d,n = k, δt,d,n = 1} with
1 ≤ k ≤ K separately. When taking into account {zt,d,n = k, δt,d,n = 0}, the two groups of
variables (τ ′k,s,v, n

′
k,s,v,m

′
k,t,d,v) (including word wt,d,n) and (τk,s,v, nk,s,v,mk,t,d,v) (excluding

word wt,d,n) will satisfy the following relationships.

τ ′k,s,v = τk,s,v, n′k,s,v = nk,s,v + 1, m′k,t,d,v = mk,t,d,v + 1. (A.12)

On the contrary, when we have {zt,d,n = k, δt,d,n = 1}, the two groups of variables will
satisfy the following relationships.

τ ′k,s,v = τk,s,v + 1, n′k,s,v = nk,s,v + 1, m′k,t,d,v = mk,t,d,v + 1. (A.13)

Based on the relationships in (A.12) and (A.13), the conditional probabilities of {zt,d,n =
k, δt,d,n = 0} and {zt,d,n = k, δt,d,n = 1} can be derived as follows.

fk0 = P
(
zt,d,n = k, δt,d,n = 0 | Z(−t,d,n),∆(−t,d,n), I,W,Ξ

)
=
P
(
zt,d,n = k, δt,d,n = 0,Z(−t,d,n),∆(−t,d,n) | I,W,Ξ

)
f
(
Z(−t,d,n),∆(−t,d,n) | I,W,Ξ

)
=

1

b+Nk,s

S
nk,s,v+1
τk,s,v ,a

S
nk,s,v
τk,s,v ,a

nk,s,v + 1− τk,s,v
nk,s,v + 1

×
α+

∑
v∗mk,d,v∗∑

k∗ (
∑

v∗mk∗,d,v∗ + α)
.

(A.14)
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fk1 =P
(
zt,d,n = k, δt,d,n = 1 | Z(−t,d,n),∆(−t,d,n), I,W,Ξ

)
=
P
(
zt,d,n = k, δt,d,n = 1,Z(−t,d,n),∆(−t,d,n) | I,W,Ξ

)
f
(
Z(−t,d,n),∆(−t,d,n) | I,W,Ξ

)
=
b+ aTk,s
b+Nk,s

S
nk,s,v+1
τk,s,v+1,a

S
nk,s,v
τk,s,v ,a

τk,s,v + 1

nk,s,v + 1
×

α+
∑

v∗mk,t,d,v∗∑
k∗ (
∑

v∗mk∗,t,d,v∗ + α)

∑Sk
s∗=1 τk,s∗,v + γ∑

v∗

(∑Sk
s∗=1 τk,s∗,v∗ + γ

)
(A.15)

Based on (A.14) and (A.15), we can compute the posterior values fk0 and fk1 for all
1 ≤ k ≤ K. Then the obtained fk0 and fk1 are normalized to get the posterior probabilities,
denoted by Pk0 and Pk1. Note that we should have

∑K
k=1(Pk0+Pk1) = 1. Then (zt,d,n, δt,d,n)

can be sampled from a posterior multinomial distribution with parameters {Pk0, Pk1} with
1 ≤ k ≤ K.

A.4 Derivation details of f(I|∆,Z,W,Ξ)

Based on the joint posterior distribution (A.9), we can derive the posterior distribution of
I as follows

f(I|W,Z,∆,Ξ) =
K∏
k

Beta(λ0 +
∑T

t=1 ik,t, λ1 + T −
∑

t=1 ik,t)

Beta(λ0, λ1)
.

For easy illustration, denote ck,1 = Qk =
∑T

t=1 ik,t to be the number of change points for
topic k and ck,0 = T − ck,1 to be the number of moments without change points. Note
that ik,t is a dummy variable. To update ik,t, we only need to compute the posterior
values f(ik,t = 1|·) and f(ik,t = 0|·), and then normalize the values to get the posterior
probabilities. Below, we derive the posterior values f(ik,t = 1|·) and f(ik,t = 0|·) as follows.

f(ik,t = 0 | I(−k,t),Z,∆, I,W,Ξ)

∝
λ1 + ck,0 − 1

λ0 + ck,1 + λ1 + ck,0 − 1
BetaV

(
Sk∑
s=1

τk,s + γ

)
(b | a)Tk,sm

(b)Nk,sm

V∏
v=1

S
nk,sm,v
τk,sm,v ,a,

f(ik,t = 1 | I(−k,t),Z,∆, I,W,Ξ)

∝
λ0 + ck,1 − 1

λ0 + ck,1 + λ1 + ck,0 − 1
BetaV

(
Sk∑
s=1

τk,s + γ

) ∏
s∈{sl,sr}

(b | a)Tk,s
(b)Nk,s

V∏
v=1

S
nk,s,v
τk,s,v ,a.

(A.16)

For ik,t = 0, it means no change point occurs. Then assume the t-th moment belongs to
the segment sm. For ik,t = 1, it means a change point occurs at the t-th moment. Then
assume t and t− 1 belong to the segments sr and sl, respectively. Note that ik,t represents
whether a change point occurs and it determines the segmentation of moments. Then it is
not easy to compute the posterior values f(ik,t = 1|·) and f(ik,t = 0|·) during the Gibbs
sampling procedure, since we need to consider both cases that a change point occurs or
not. To address this issue, we use the merge and split algorithm (Lan et al., 2013), which
is introduced as follows.

38



Fine-Grained Topic Change Point Detection

(1) The Merge Algorithm

Let i
(b)
k,t denote the value of ik,t in the bth iteration during the Gibbs sampling procedure.

If i
(b)
k,t = 1, there is a change point in the bth iteration. Then we can easily compute

the posterior probability of i
(b+1)
k,t = 1. However, when calculating the posterior value of

i
(b+1)
k,t = 0, we should use the merge algorithm. Specifically, assume in the bth iteration,

i
(b)
k,t belongs to the segment sr and i

(b)
k,t−1 belongs to the segment sl. Then in the (b + 1)th

iteration, i
(b+1)
k,t = 0 implies the two segments are merged into one, denoted by sm; see the

top panel in Figure A.2 for illustration of this case.

Figure A.2: The top panel illustrates the case when i
(b)
k,t = 1 but i

(b+1)
k,t = 0 at t = 4, and

the bottom panel illustrates the case when i
(b)
k,t = 0 but i

(b+1)
k,t = 1 at t = 4.

Then to compute the posterior probability for i
(b+1)
k,t = 0, we need to calculate τk,sm,v

and nk,sm,v for each word v in the vocabulary. As for nk,sm,v, we always have nk,sm,v =
nk,sl,v + nk,sr,v. As for τk,sm,v, we basically have τk,sm,v = τk,sl,v + τk,sr,v except for one
case. That is, if in segments sl and sr, we have nk,s,v ≥ 0. Meanwhile, in sl or sr, we
have τk,s,v = 1. Then the calculation of τk,sm,v can randomly select (a) or (b), where (a)
τk,sm,v = τk,sl,v + τk,sr,v and (b) τk,sm,v = τk,sl,v + τk,sr,v − 1.

(2) The Split Algorithm

Consider another case with i
(b)
k,t = 0, which means moments t−1 and t belong to the same

segment. When i
(b+1)
k,t = 1, the original segment would split into two parts in moment t.

Thus we need to use the split algorithm to calculate the posterior probability for i
(b+1)
k,t = 1.

Specifically, assume in the bth iteration, i
(b)
k,t belongs to the segment sm. Further assume

sm splits into two parts sl and sr; see the bottom panel in Figure A.2 for an illustration of
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this case. In this case, based on the topic assignment zt,d,n in sl and sr, we need to update
δt,d,n in these segments. Below we give the process to sample δt,d,n with zt,d,n = k.

Step 1. Sample δt,d,n from a Bernoulli distribution with parameter ρ = τk,sm,v/nk,sm,v.
Step 2. If δt,d,n = 1, we have τk,sm,v = τk,sm,v−1 and nk,sm,v = nk,sm,v−1. If δt,d,n = 0,

we have τk,sm,v = τk,sm,v and nk,sm,v = nk,sm,v − 1.
Step 3. Repeat the first two steps, until all the words have δ updated.
After resampling δ, there might exist some cases not satisfy the constraint τk,s,v = 0 if

and only if nk,s,v = 0. If τk,s,v = 0 and nk,s,v > 0 in segments sl or sr, we set τk,s,v = 1
and re-sample the corresponding δ for all the words in the vocabulary. Then the posterior
probability of ik,t = 1 is the same as (A.16), but the corresponding value of τ needs to be
updated by recounting δ.

A.5 The proof of Theorem 1

The proof of Theorem 1 basically follows Theorem 3 in McGoff et al. (2022). We begin by
applying the main result of Theorem 3, considering the posterior distribution of the data
generated by the model PI∗,Φ∗ , and particularly examining how the posterior distribution
concentrates in the parameter space around the true change point set I∗.

Firstly, we assume that the data generation process PI∗,Φ∗ is correctly specified, meaning
that the model accurately reflects the true underlying process that generates the data. Based
on the prior density given in (A.1) in Appendix A.2, the corresponding prior distribution
Π of I is fully supported. Specifically, for any set A ⊂ ΘI within the parameter space
ΘI = {0, 1}KT , we have Π(A) > 0. The full support of the prior guarantees that all
potential parameter values are assigned non-zero probability, thereby preventing prior bias.
In addition, assume the updating function f , i.e., the posterior distribution of I provided
in Appendix A.4, is regular and satisfies the following conditions.

(i) There exists a measurable function f∗ : W → R such that for all W ∈W , we have
supI |f(I,W)| ≤ f∗(W).

(ii) For each δ > 0, there exists a measurable function ρδ : W → (0,∞) such that for
each W ∈W , and limδ→0+

∫
ρδdν = 0, we have

sup{|f(I,W)− f(I ′,W)| : d(I, I ′) ≤ δ} ≤ ρδ(W),

where d(·, ·) represents the Hamming distance. This condition ensures that the vari-
ation of the updating function is smooth and tends to zero as δ decreases.

Then according to Theorem 2 in McGoff et al. (2022), it can be guaranteed that the
Gibbs posterior distribution of I concentrates around a set ΘI,min, which is characterized
as the solution set of a variational problem. This variational characterization is crucial in
demonstrating that ΘI,min corresponds to the identifiability class [I∗]. Here [I∗] is the set
of parameters I ′ satisfying µI′ = µI∗ , where µ is the unique Gibbs measure associated
with f . In this context, we rely on specific arguments related to the problem at hand,
particularly a foundational result from Bowen’s thermodynamic formalism (Bowen, 1975),
which asserts the uniqueness of equilibrium states for Hölder continuous potentials on a
mixing Subshift of Finite Type (SFT). This result guarantees that there exists a unique
equilibrium distribution corresponding to I∗. As a result, the posterior distribution will
concentrate around I∗ as the number of documents D and the number of words N increase.
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A.6 The proof of Theorem 2

Given the change points, document d at time t uniquely corresponds to a word probability
vector ηt,d =

∑K
k=1 θt,d,kφk,sk,t ∈ ΩV−1, where sk,t ∈ {1, 2, · · · , Sk} denotes the index of

segment of topic k at time t and
∑K

k=1 θt,d,k = 1. To simplify the analysis, we assume all time
points have the same number of documents D and all documents have the same number of
words N . Then the words of document d at time t, i.e. Wt,d = {wt,d,n}Nn=1, are i.i.d. samples
from a multinomial distribution parameterized by this probability vector ηt,d. Given the
topic-word parameters Φ, this induces a probability distribution Pηt,d|G, whose support is
the convex set G. The joint distribution of the full data set W, denoted by PW|G, is the

product distribution of all single document distributions: PW|G =
∏T
t=1

∏D
d=1 PWt,d|G(Wt,d),

where pWt,d|G(Wt,d) =
∫
G

∏N
n=1

∏V
l=1 η

I(wt,d,n=l)
t,d,l dPηt,d|G(ηt,d).

Assume the observed wordsW are generated according to the TOPIC-PYP process given
the fixed change points and the true parameters Φ∗ = (φ∗1,1, · · · , φ∗1,S1

, · · · , φ∗K,1, · · · , φ∗K,SK
)>.

Let G∗ = conv(Φ∗) be the true topic polytope. Under the TOPIC-PYP process, Φ is en-
dowed with a prior distribution Ψ based on the Pitman-Yor process. The main question
here is the contraction behavior of the posterior distribution Ψ(G|W) under a fixed T , as
the number of documents D and the number of words N go to infinity. To address this
problem, we first provide some needed assumptions.

Assumption 1 Ψ is a prior distribution on Φ such that the following assumptions hold
for the relevant parameters that reside in the support of Ψ.

(A1) Geometric properties (A1) and (A2) listed in Section 3 in Nguyen (2015) are satisfied
uniformly for all G in the support of Ψ.

(A2) Each topic vector φk,s(1 ≤ K, 1 ≤ s ≤ Sk) is bounded away from the boundary of
ΩV−1.

(A3) For any small ε, Ψ(‖φk,s − φ∗k,s‖ ≤ ε) ≥ cεV
∑K

k=1 Sk , ∀ 1 ≤ k ≤ K, 1 ≤ s ≤ Sk.

Assumptions (A1)-(A3) are mild assumptions observed in practice. It is noteworthy that,
conditional on the change points, the generation of documents and words can be framed
within a general hierarchical model: G|I ∼ Ψ, ηt,d|G ∼ Pηt,d|G, Wt,d|ηt,d ∼ PWt,d|ηt,d

for
t ∈ {1, · · · , T} and d ∈ {1, · · · , D}. Note that the model satisfies the conditions concerned
with entropy condition for certain sets in the support of the prior, the “thickness” of the prior
as measured by the Kullback–Leibler distance, and the conditions related to the Hellinger
information function. Nguyen (2015) presented an abstract posterior contraction theorem
for hierarchical models of this nature. Building upon Theorem 4 of Nguyen (2015), it suffices
to verify the conditions of this theorem for its applicability to our specific setting.

Denote G to be the support of the prior distribution Ψ of G. Then define the “minimum-
matching” Euclidean distance between two topic polytope as dM(G,G′) = max

φ∈extrG
min

φ′∈extrG′
‖φ

− φ′‖ ∧ max
φ′∈extrG′

min
φ∈extrG

‖φ′ − φ‖. Define the Hausdorff metric as dH(G,G′) = min{ε ≥

0|G ⊂ G′ε;G
′ ⊂ Gε} = maxφ∈G d(φ,G′) ∧ maxφ′∈G′ d(φ′, G), where Gε = G + BV (0, ε) =

{φ + e|φ ∈ G, e ∈ RV , ‖e‖ ≤ 1} and d(φ,G′) = inf{‖φ − φ′‖, φ′ ∈ G′}. Let N(ε,G, dH)
and D(ε,G, dH) denote the covering number and packing number of G in Hausdorff metric
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dH, respectively. Define the Hausdorff ball as BdH(G1, δ) = {G ∈ ΩV−1 : dH(G1, G) ≤
δ}. A useful quantity for proving posterior concentration theorems is the Hellinger in-
formation of Hausdorff metric for a given set, which is a real-valued function defined
as ΨG(δ) = infG∈G;dH(G∗,G)≥δ/2 h

2(pWt,d|G∗ , pWt,d|G), where h2(p, q) = (1/2)
∫

(
√
p − √q)2

represents the Hellinger distance between two densities p and q. Define ΦG : R+ → R
to be an arbitrary non-negative valued function on the positive reals such that for any
δ > 0, supG,G′∈G;dH(G,G′)≤ΦG(δ) h

2(pWt,d|G, pWt,d|G′) ≤ ΨG(δ)/4. Since θt,d ∼ Dir(α), mean-
ing that {θt,d,1, · · · , θt,d,K} are exchangeable, then we have ΦG(δ) = c0

4TNC0
ΨG(δ). Define the

neighborhood of the prior support around G∗ in terms of Kullback–Leibler distance of the
marginal densities pWt,d|G: BK(G∗, δ) = {G|K(pWt,d|G∗ , pWt,d|G) ≤ δ2;K2(pWt,d|G∗ , pWt,d|G) ≤
δ2}, where K(p, q) denotes the Kullback–Leibler divergence and K2 =

∫
p[log(p/q)]2.

Starting with the entropy condition, we note that

logD {ε/2,G ∩BH (G∗, 2ε) , dH} ≤ logN {ε/4,G ∩BH (G∗, 2ε) , dH} = O(1).

Since ΨG(ε) ≥
[
c1(ε/2)p − 6(V + 1)e−Nε

2/32(V+1)
]2

, we obtain that ΨG(ε) ≥ cε2p as long as

c1(ε/2)p ≥ 12(V+1) exp[−Nε2/32(V+1)]. Set εT,D,N = (log(TD)/(TD))1/2+(logN/(TD))1/2

+ (logN/N)1/2. This is satisfied because ε is bounded from below by a large multiple of
εT,D,N > (logN/N)1/2. Recall that ΦG(δ) = c0

4TNC0
ΨG(δ). Then we have

logD {c0ΨG(ε)/ (4TNC0) ,G ∩BH (G1, ε/2) , dH}
≤ logN

{
c0cε

2p/ (4TNC0) ,G ∩BH (G1, ε/2) , dH
}

. log
(
NV

∑K
k=1 Sk × ε−(2p−1)V

∑K
k=1 Sk

)
≤ TDε2.

Thus the entropy condition is established. To verify the Hellinger information conditions,
we note that for some constant c > 0,

exp
(
2TDε2

T,D,N

) ∑
j≥Mm

exp [−DΨG (jεT,D,N ) /8]

≤ exp
(
2TDε2

T,D,N

) ∑
j≥Mm

exp
[
−cD (jεT,D,N )2p /8

]
. exp

(
2TDε2

T,D,N

)
exp

[
−cD (MmεT,D,N )2p /8

]
,

where the right side of the above vanishes if (MmεT,D,N )p is a sufficiently large multiple of

εT,D,N . This holds if we choose Mm = Mε
−(p−1)/p
T,D,N for a large constant M .

It remains to verify the “thickness” property of the prior distribution. It is easy to
abtain that as long as N & log (1/εT,D,N ), then

log Ψ (G ∈ BK (G0, εT,D,N )) ≥ c (c0) log
(
ε2
T,D,N/N

3
)V ∑K

k=1 Sk

= c (c0)V (
K∑
k=1

Sk) (2 log εT,D,N − 3 logN) .

Based on the above analysis, we can apply Theorem 4 of Nguyen (2015) to obtain a posterior

contraction rate MmεT,D,N � ε1/p
T,D,N , which leads to Theorem 2 in this work.

42



Fine-Grained Topic Change Point Detection

Appendix B. Additional Empirical Results

B.1 Checking the convergence of TOPIC-PYP

We apply the Gibbs sampling method to estimate TOPIC-PYP, which is a well-established
Markov chain Monte Carlo (MCMC) technique. We have shown in Section 3.3 that TOPIC-
PYP satisfies the necessary conditions for posterior convergence required by Gibbs sampling.
In this section, we empirically demonstrate the posterior convergence of TOPIC-PYP in the
simulation experiments on syngenetic datasets. To this end, we evaluate the posterior con-
vergence using the Gelman-Rubin diagnostic, which is also known as the R̂ statistic (Gelman
and Rubin, 1992; Gelman et al., 2013). It is a widely used convergence assessment method
for MCMC algorithms. The key idea of Gelman-Rubin diagnostic is to examine multiple
independent chains initialized from diverse starting points and to determine whether all
chains have converged to the same target posterior distribution. If different chains have not
converged, their sample means and variances will differ substantially. Once they approach
the target posterior distribution, they will exhibit similar behavior, with their means and
variances stabilizing approximately at the same values. Based on this idea, the Gelman-
Rubin diagnostic R̂ statistic is computed by comparing the within-chain variance to the
between-chain variance. A value of R̂ close to 1.0 suggests that the chains have mixed well
and reached the target distribution, signaling convergence.

To compute the R̂ statistic, we ran 5 chains initialized from diverse starting points. Each
chain is run for 50 iterations, which are sufficient to achieve convergence. Then we collect
the last 10 posterior samples from each chain to compute the R̂ statistic. Not that TOPIC-
PYP involves a lot of parameters to estimate. Specifically, ∆ = {δt,d,n}, Z = {zt,d,n}, where
1 ≤ t ≤ T, 1 ≤ d ≤ Dt, 1 ≤ n ≤ Nt,d, and I = {ik,t}, where 1 ≤ k ≤ K, 1 ≤ t ≤ T . Thus

we separately compute the R̂ statistic for each parameter. Then we compute the averaged
R̂ statistic for the groups ∆, Z, and I separately. The corresponding results are shown in
Table B.1. It is obvious that, the averaged R̂ statistics are all close to 1 in the four scenarios.
Particularly, even for the complicated scenarios (i.e., Scenario 3 and Scenario 4), the
averaged R̂ statistics behave very well.

Table B.1: The averaged value of R̂ statistic in different scenarios.

Group Scenario 1 Scenario 2 Scenario 3 Scenario 4

∆ 1.010 1.014 1.010 1.018
Z 1.171 1.155 1.140 1.136
I 1.158 1.017 1.097 1.054

To provide a more comprehensive understanding of the convergence diagnostics, we fur-
ther present the distribution plots of the R̂ statistics. To save space, we use I as an example,
as it represents the locations of change points and serves as one of the key parameter groups
in TOPIC-PYP. Figure B.1 presents the histograms of the R̂ statistics for all parameters in
the group I across the four scenarios. It is obvious that, nearly all parameters in I have R̂
statistics close to 1. For the parameter groups ∆ and Z, we observe similar results. All these
findings empirically demonstrate that TOPIC-PYP has achieved satisfactory convergence.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure B.1: The histograms of R̂ statistics in the parameter group I under four scenarios.

B.2 The results of precision and recall under Scenarios 1-3

Table B.2: The comparison results of precision and recall under Scenario 1.

Precision Recall

Method h = 0 h = 1 h = 2 h = 0 h = 1 h = 2

TOPIC-PYP 0.950 0.950 0.950 0.950 0.950 0.950

Topic-CD 0.925 0.925 0.925 0.950 0.950 0.950

DTM

CS DP 0.300 0.300 1.000 0.300 0.300 1.000
CS BS 0.300 0.300 1.000 0.300 0.300 1.000
CS T 0.500 1.000 1.000 0.500 1.000 1.000
JS DP 0.300 0.300 0.950 0.300 0.300 1.000
JS BS 0.300 0.300 0.950 0.300 0.300 1.000
JS T 0.300 0.300 0.950 0.300 0.300 1.000

D-ETM

CS DP 0.500 0.500 1.000 0.500 0.500 1.000
CS BS 0.300 0.300 1.000 0.300 0.300 1.000
CS T 0.500 1.000 1.000 0.500 1.000 1.000
JS DP 0.500 1.000 1.000 0.500 1.000 1.000
JS BS 0.500 1.000 1.000 0.500 1.000 1.000
JS T 0.500 1.000 1.000 0.500 1.000 1.000

Rolling LDA

CS DP 0.500 0.500 0.950 0.500 0.500 1.000
CS BS 0.300 0.300 1.000 0.300 0.300 1.000
CS T 0.500 1.000 1.000 0.500 1.000 1.000
JS DP 0.300 0.300 1.000 0.300 0.300 1.000
JS BS 0.500 1.000 1.000 0.500 1.000 1.000
JS T 0.300 0.450 0.800 0.300 1.000 1.000
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Table B.3: The comparison results of precision and recall under Scenario 2.

Precision Recall

Method h = 0 h = 1 h = 2 h = 0 h = 1 h = 2

TOPIC-PYP 0.933 0.933 0.933 1.000 1.000 1.000

Topic-CD 0.833 0.933 0.933 0.900 1.000 1.000

DTM

CS DP 0.500 1.000 1.000 0.500 1.000 1.000
CS BS 0.500 1.000 1.000 0.500 1.000 1.000
CS T 1.000 1.000 1.000 1.000 1.000 1.000
JS DP 0.500 1.000 1.000 0.500 1.000 1.000
JS BS 0.500 0.500 1.000 0.500 0.500 1.000
JS T 1.000 1.000 1.000 1.000 1.000 1.000

D-ETM

CS DP 0.400 0.900 1.000 0.400 0.900 1.000
CS BS 0.200 0.900 1.000 0.200 0.900 1.000
CS T 0.600 1.000 1.000 0.600 1.000 1.000
JS DP 0.300 0.800 1.000 0.300 0.800 1.000
JS BS 0.300 1.000 1.000 0.300 1.000 1.000
JS T 0.500 1.000 1.000 0.500 1.000 1.000

Rolling LDA

CS DP 0.600 1.000 1.000 0.600 1.000 1.000
CS BS 0.300 1.000 1.000 0.300 1.000 1.000
CS T 0.700 1.000 1.000 0.700 1.000 1.000
JS DP 0.500 0.600 1.000 0.500 0.600 1.000
JS BS 0.400 0.600 1.000 0.400 0.600 1.000
JS T 0.300 0.900 1.000 0.300 0.900 1.000

Table B.4: The comparison results of precision and recall under Scenario 3.

Precision Recall

Method h = 0 h = 1 h = 2 h = 0 h = 1 h = 2

TOPIC-PYP 0.775 1.000 1.000 0.945 1.000 1.000

Topic-CD 0.683 0.975 0.975 0.790 1.000 1.000

DTM

CS DP 0.500 0.950 1.000 0.500 0.950 1.000
CS BS 0.450 0.875 0.950 0.450 0.875 0.950
CS T 0.575 1.000 1.000 0.575 1.000 1.000
JS DP 0.500 0.975 1.000 0.500 0.950 0.950
JS BS 0.450 0.875 1.000 0.450 0.875 0.875
JS T 0.575 1.000 1.000 0.575 1.000 1.000

D-ETM

CS DP 0.400 0.800 1.000 0.400 0.800 0.975
CS BS 0.200 1.000 1.000 0.200 1.000 1.000
CS T 0.600 1.000 1.000 0.600 1.000 1.000
JS DP 0.400 1.000 1.000 0.400 1.000 1.000
JS BS 0.400 1.000 1.000 0.400 1.000 1.000
JS T 0.600 1.000 1.000 0.600 1.000 1.000

Rolling LDA

CS DP 0.500 0.950 0.950 0.500 0.950 0.950
CS BS 0.450 0.945 0.975 0.450 0.945 0.975
CS T 0.750 0.975 1.000 0.675 0.975 0.975
JS DP 0.500 0.950 1.000 0.500 0.950 1.000
JS BS 0.500 1.000 1.000 0.500 0.950 0.950
JS T 0.750 1.000 1.000 0.750 1.000 1.000
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B.3 Comparison of computational efficiency

We compare the computational efficiency of TOPIC-PYP with other methods in this section.
To this end, we calculate the running time for different methods. All methods are imple-
mented on a server with 8 CPUs and 16 GB memory. For the competing methods, the ex-
periments are conducted using publicly available codes or programs provided by the authors,
with experimental settings adhering to their default configurations. Specifically, the codes of
Topic-CD provided by the authors are available at https://github.com/ffair/Topic-CD.
The DTM method is implemented using the Python library gensim. The D-ETM method is
implemented by the codes accompanying the original paper (Dieng et al., 2019), which are
available at https://github.com/adjidieng/DETM. The Rolling LDA method is imple-
mented by the R package rollinglda; see https://github.com/JonasRieger/rollinglda

for details. Last, the codes for the ANTM method are available at https://github.com/

hamedR96/antm.
The detailed runtime results (in seconds) are shown in Table B.5, from which we can

draw the following conclusions. First, compared to two-stage methods, both unified meth-
ods (including TOPIC-PYP and Topic-CD) have significantly longer running time and thus
behave less computationally efficient. This is because the unified methods combine topic
modeling and change point detection, making the model structures more complex. Addi-
tionally, some existing two-stage models (e.g., DTM and Rolling LDA) can be implemented
via well-developed packages and thus run very fast. Second, in comparison to Topic-CD,
the running time of TOPIC-PYP is generally comparable, although slightly slower. This is
because TOPIC-PYP allows for change point detection for each individual topic, whereas
Topic-CD can only detect change points that are shared across all topics. That is the price
TOPIC-PYP should pay in terms of computational efficiency. Last, the runtime of TOPIC-
PYP increases as the model becomes more complex (i.e., with longer time span T or a larger
number of change points Qk). Basically, he runtime of TOPIC-PYP empirically exhibits
a linear growth relationship with both T and Qk. Given the computational limitations of
TOPIC-PYP, enhancing its computational efficiency should be an important area of future
research.

Table B.5: The comparison results of running time (in seconds) for different methods in
four scenarios.

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

Unified
TOPIC-PYP 4692 4692 48715 217357

Topic-CD 4317 4317 43624 212884

Two-Stage

DTM 1093 1077 9726 22477
D-ETM 486 353 6247 44333

Rolling LDA 15 15 42 108
ANTM 2112 2112 17226 51099

B.4 Influence of other hyperparameters

We investigate the influence of other hyperparameters in TOPIC-PYP (i.e., λ = {λ0, λ1},
α, and γ). We consider Scenario 2 for illustration, which assumes the presence of two
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change points and T = 10. We generally follow the experimental settings in Section 4.1.
For the baseline setup, let a = 0.5, b = 5, λ = {2, 5}, α = 0.1, and γ = 0.1. Then we vary
the value of each hyperparameter while keeping the others fixed. Table B.6 summarizes the
hyperparameter value and the corresponding results of TOPIC-PYP evaluated by precision,
recall, and accuracy. We find that, varying the values of λ, α, and γ has little effect on the
change point detection performance of the TOPIC-PYP model. This result implies that
TOPIC-PYP is quite robust to these hyperparameters.

Table B.6: The precision, recall, and accuracy of TOPIC-PYP by changing the value of
hyperparameters.

Hyperparameter Precision Recall Accuracy

Baseline 0.83 1.00 0.89

λ
{2, 4} 0.83 1.00 0.89
{2, 6} 0.83 1.00 0.89

α
0.05 0.81 1.00 0.89
0.2 0.83 1.00 0.89

γ
0.05 0.85 1.00 0.91
0.2 0.83 0.97 0.87

B.5 Topic meanings in the Journal dataset

For the Journal dataset, we extract K = 20 topics, among which Topic 1 and Topic 15
share one change point at year t = 2016. The other eighteen topics do not have changing
topic meanings. Table B.7 summarizes the meanings of these eighteen topics using the
representative words. As shown, we find all eighteen topics have an explicit meaning. For
example, Topics 4, 6, and 10 are related to the stochastic process. Among them, Topic 4
focuses on the Poisson process and jump process, Topic 6 focuses on the Brownian process
and Levy process, while Topic 10 focuses on the theory of stochastic process. Other topics
also have their thematic meanings, such as linear regression represented by Topic 11, and
hypothesis test represented by Topic 17.
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Table B.7: The meanings of eighteen topics without change points in the Journal dataset.

Number Meaning Representative words

2 Quantile Regression
regression, functional, quantile, functions, nonparametric,
principal, components, component

3 Mixed Effect
effects, mixture, multivariate, mixed, longitudinal, latent,
generalized, parameters

4 Stochastic Process
process, processes, point, Poisson, stochastic, population,
jump, state

5
Causal Inference,

Graphical Analysis
treatment, effects, covariates, effect, inference, network,
graphs, variables, cluster

6 Brownian Process
stochastic, equations, differential, Brownian, solutions,
processes, lévy, process

7 Survival Analysis
error, survival, measurement, assumptions, sensitivity,
effects, estimates, hazard

8 System Analysis
system, state, sequential, optimal, PCA, framework, cost,
structure

9 Optimal Design
designs, optimal, design, observations, change, volatility,
threshold, influence, minimum

10
Stochastic

Process Theorem
process, limit, large, theorem, asymptotic, prove,
stationary, convergence

11 Linear Regression
regression, linear, covariance, matrix, highdimensional,
correlation, sample, variables

12 Classification Method
class, functions, measure, general, representation,
particular, Dirichlet, measures

13 Probability
density, matrix, covariance, Gaussian, functions, matrices,
kernel, convergence

14 Feature Selection
selection, regression, adaptive, dimension, sparse,
reduction, lasso, loss

16
Maximum Likelihood

Estimator
estimator, likelihood, selection, asymptotic, regression,
bootstrap, empirical, consistency

17 Hypothesis Eest
test, tests, testing, statistics, null, power, hypothesis,
statistic

18
Parameter Estimator

Inference
algorithm, estimator, likelihood, variance, robust,
maximum, confidence, error

19 Time Series Analysis
series, statistical, performance, structure, predictive,
applied, provide, multivariate

20 Online Learning
spatial, online, classification, statistical, multiple,
modeling, clustering, Bayesian
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